
COMP 7070 Advanced Topics in AI and ML March 26, 2024

Lecture 11: Flow: how to derive Flow model

Instructor: Yifan Chen Scribes: Wenbo Shang, Rui Cao Proof reader: Zhanke Zhou

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publi-

cations. They may be distributed outside this class only with the permission of the Instructor.

11.1 Economics Explanation of the Dual Form for Optimal Trans-
port

Neural ODE can also be applied to the economic field, and here we can present an economic explanation
of the dual form of OT. The primal concept is the transport cost in the form of

∫
c(x, y)dπ(x, y), where

π(x, y) is coupling function, as shown in Figure 11.1.
The dual form is to outsource the task to a vendor, which means we have a collection fee including

two fees:
∫
X ψ(x)dµ(x)+

∫
Y ψ(y)dν(y). The vendor will guarantee the condition φ(x)+ψ(y) ≤ c(x, y),

where c(x, y) denotes the cost that transport by yourself and the LHS is the transport fee. During
the implication, we can represent as follows:∫

ψ(x)dπ(x, y) +

∫
ψ(y)dπ(x, y) =

∫
x
ψ(x)dµ(x) +

∫
y
ψ(y)dν(y) ≤

∫
c(x, y)dπ(x, y). (11.1)

targetsource

Figure 11.1: Transport cost

11.2 Preliminary of the Flow model

In this section, we focus on how to derive the flow model. Let’s start with MLE first.

11.2.1 MLE

Maximum Likelihood Estimation (MLE) is a method used in statistics to estimate the parameters of
a statistical model. It involves finding the parameter values that maximize the likelihood function,
representing the probability of observing the given data under the specified model. Here we first
present the formula of the distribution of variable x and its MLE as below:

qθ(x) =

∫
q(z)q(x|z) dx. (11.2)

MLE = max
θ

E
x∼p(x)

log qθ(x). (11.3)

VAE formally addresses the MLE issue using ELBO while GAN leverages discriminator and min-
imax game. However, the Flow model directly does integration with Equation 11.2.

11-1

11-2 Lecture 11: Flow: how to derive Flow model

11.2.2 Settings of Flow model

Assume the variable z satisfies µ(z) ∼ N (0, I), to remove randomness from variable x, we can represent
q(x|z) as follows:

q(x|z) = δ(x− g(z)). (11.4)

where g is a generator. Accordingly, we can equivalently get the following formula:

qθ(x) =

∫
δ(x− g(z)) dµ(z). (11.5)

Thus, we have qθ ∼ g#µ where g#µ represents a new distribution that given map g, g#µ can be
formed from the original one µ. In other words, we have µ ∼ g−1

qθ. Here we can derive the target
density function:

qθ(x) = µ(g−1(x)) ·
∣∣∣∣ DzDx

∣∣∣∣ . (11.6)

where g is invertible and Jacobin determinant
∣∣ Dz
Dx

∣∣ is easy to compute.

11.3 NICE

Nice is the first flow model paper that made the Jacobin matrix into a triangle matrix. Specifically,
assume matrix h can be embedded into two pairs like this:

h =

(
h1
h2

)
=

(
x1

x2 +mθ(x1)

)
. (11.7)

Thus, we can obtain:
Dh

DX
=

(
I

Dmσ
DX1

I

)
⇒ | Dh

DX
| = 1. (11.8)

We can also compute the convertible process:

X =

(
X1

X2

)
=

(
h1

h2 −m0(X1)

)
=

(
h1

h2 − w0(h1)

)
= g−1(h). (11.9)

11.3.1 How to make the setting useful

First,
hl ◦ hl−1 · · · ◦ h0(x) = z. (11.10)

where z is noise. Second, shuffle h1 and h2. Third, scale transforms. Then, we can derive the following
equation from the last layer:

z = S ⊙ he,⇒
Dz

Dhe
= diag(S). (11.11)

where ⊙ is the Hadamard product.

11.3.2 Real-valued non-volume preserving transformation

We know that ∣∣∣∣ DzDhe

∣∣∣∣ ̸= 1. (11.12)

So, we can derive the final form

h =

(
x1

S(x1)⊙ x2 +m(x1)

)
⇒ Dh

DX
=

(
I

DS
DX1

⊙X1 diag(S)

)
. (11.13)

where S(x1) = exp(logS) and logS = NN(x1). A positive S can be generated by equation S(x1) =
exp(logS). In this way, we can easily compute the Jacobin determinant.

Lecture 11: Flow: how to derive Flow model 11-3

11.3.3 How to use convolution as a trick

First, we can shuffle the channel but not X,Y . Second, we can use squeezing to increase channel size.
For example,

h× w × c→ h

2
× w

2
× 4c. (11.14)

11.3.4 How to sample after obtaining the model

Assume z ∼ N (0, I), we can sample z = hl, with g
−1
0 ◦ g−1

1 ◦ · · · g−1
l (z).

11.3.5 Multi-level

Given matrix X, we can design multi-level flows:

Notably, we cannot assume

z1z3
z5

 ∼ N (0, I).

We have
P (z1, z3, z5) = P (z1|z3, z5) · P (z3|z5) · P (z5)

= P (z1|z2) · P (z3|z4) · P (z5).
(11.15)

where σ(z5) = σ(z4), σ(z3, z5) = σ(z2), z1 ∼ N (µ(z2),Σ(z2)), z3 ∼ N (µ(z4),Σ(z4)) and z5 ∼ N (µ,Σ).
And µ and Σ are tunable. Thus , we can regard Equation 11.15 as:

P (z1, z3, z5) = P (z1|z2) · P (z3|z4) · P (z5),
= N (µ(z2),Σ(z2)) · N (µ(z4),Σ(z4)) · N (µ,Σ).

(11.16)

Here is the generation process:

z5 ∼ N (µ,Σ), z4 = flow−1
3 (z5),

z3 ∼ N (µ(z4),Σ(z4)), z2 = flow−1
2

(
z3,
z4

)
,

z1 ∼ N (µ(z1),Σ(z2)),

X = flow−1
1

(
z1
z2

)
.

(11.17)

11.4 GLOW: Improve Shuffling

Here we first present the LU decomposition: W = PLU , where P is a permutation matrix, L is the
lower triangle matrix, and U is the upper triangle matrix. Thus we have |W | = |U | · |L|. However,
Not all W can be represented by LU . Consider a W with W11 = 0, but still W is full rank. We derive
that

W11 = L11 · U11 = 0 =⇒ L11 = 0 or U11 = 0

=⇒ L or U will not be full rank.

=⇒ W = LU is not full rank.

(11.18)

Here, the conclusion contradicts our original assumption. So, we need to use P .

11-4 Lecture 11: Flow: how to derive Flow model

11.5 Other tools

We also have other tools, which should be easy to compute for g−1 and | Dz
DX |. For example, we present

Planner Flow here. Specifically, f(x⃗) = x⃗ + u⃗ · h(w⊤ + b), where h is a scalar function. Accordingly,
we have | Df

DX | = 1 + u⊤w · h′(w⊤ + b).

11.6 Neural ODE

Let’s start with the ResNet, here given the form of ResNet:

zl+1 = zl + f(zl;wl). (11.19)

In the ResNet, we usually meet the initial value problem, i.e., z0 and T0. Thus, the solution to the
equation is approximately equal to the solution of another equation:

∂z

∂t
= NN(z(t), t; θ). (11.20)

where ze+1 − ze ≈ ∂z
∂t . The inference equation of the ODE can be:

z0 +

∫ T1

T0

NN(z(t), t; θ) = z(T1). (11.21)

Then we can reformula the training process of the ResNet. We can apply an ODE solver to the
Equation 11.21 and obtain:

L(z(T1)) = L(ODE Solver(z(T0), NNθ, T0, T1, θ)). (11.22)

However, people may worry about whether the method is feasible for PyTorch. For inference, we only
need to store NNθ in the GPU memory(e.g., L layers for ResNet). Besides, directly using Autodiff in
PyTorch will cause O(L) memory and we can use Adjoint Sensitivity Method instead.

Suppose the adjoint state a(t) = dL
dz(t) ; we can obtain the following equation after complex deriva-

tion.
da

dt
= −a(t) · ∂f(z(t), t; θ)

∂z(t)
. (11.23)

Thus we can put the Equation 11.27 into the equation below.

a(T1) =
dL

dz(T1)
⇒ a(T0) = a(T1) +

∫ T0

T1

da

dt
dt. (11.24)

Since our target is to calculate dL
dθ , we need to achieve a(T1) =

∂L
∂z after operations on z(T0) and z(T1).

aaug = (a, aθ =
dL

dθ
, at =

dL

dt
),

faug = (f, θ, t).
(11.25)

Then it yields

Dfaug
D(z, θ, t)

=

∂f
∂z

∂f
∂θ

∂f
∂t

0 0 0
0 0 0

 . (11.26)

For da
dt , we can achieve

da

dt
= −a(t) · ∂f

∂t
,

daθ
dt

= −aθ(t) ·
∂f

∂θ
.

(11.27)

Lecture 11: Flow: how to derive Flow model 11-5

Specifically, we know

a(t) =
dL

dz(t)
=

dL

dz(t+ ε)
· dz(t+ ε)

dz(t)
. (11.28)

where z(t+ ε) = a(t+ ε), L is influenced by z(t+ ε) and z(t+ ε) is decided by z(t). Thus we have

da

dt
= lim

ε→0

a(t+ ε)− a(t)

ε
= lim

ε→0+

a(t+ ε)− a(t)

ε
,

= lim
ε→0+

a(t+ ε)− a(t+ ε)
d(z(t)+

∫ t+ε
t f(z(s),s;θ)ds)

dz(t)

ε
,

= lim
ε→0+

−a(t+ ε)

ε
·
∫ t+ε
t f(z(s), s; θ)ds

dz(t)
,

= lim
ε→0+

−a(t+ ε)

ε
· ε · ∂f(z(t), t; θ)

∂z(t)
,

= −a(t) · ∂f(z(t), t; θ)
∂z(t)

.

(11.29)

Thus we prove the Equation 11.27. Then we can obtain

aθ(T0) ≡
dL

dθ(T0)
= aθ(T1) +

∫ T0

T1

daθ
dt
dt. (11.30)

where aθ(T1) = 0 and
∫ T0

T1

daθ
dt dt is our target.

