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9.1 Revisiting Maximum Likelihood Estimation

Consider the scenario where we are modeling data using px,z(·, ·;θ), in which θ represents the parame-
ters of our model, and x, z are the observed and hidden variables, respectively. These hidden variables
could take the form of labels or hidden embeddings, among others. Often, we employ maximum
likelihood estimation (MLE) to estimate these parameters:

θ̂ = argmax
θ

P (X; θ).

Here, P (X; θ) is the marginal likelihood of X, also known as the evidence.
For models incorporating hidden variables, the marginal likelihood P (X; θ) can be calculated using

the formula:

P (X; θ) =

∫
P (X | z; θ) · P (z; θ) dz.

In some complex models, this integral is challenging to compute, meaning that the marginal likelihood
can be difficult to evaluate. This creates obstacles for maximizing P (X; θ). In the following example
of a Bayesian Gaussian mixture model, we will see how difficult it can be to compute P (X; θ).

9.1.1 Bayesian Gaussian Mixture Model

Consider a Bayesian mixture of unit-variance univariate Gaussians. There are K mixture components,
corresponding to K Gaussian distributions with means µ = {µ1, . . . , µK}. The mean parameters are
drawn independently from a common prior p (µk), which we assume to be a Gaussian N

(
0, σ2

)
;

the prior variance σ2 is a hyperparameter. To generate an observation xi from the model, we first
choose a cluster assignment ci. It indicates which latent cluster xi comes from and is drawn from a
categorical distribution over {1, . . . ,K}. (We encode ci as an indicator K-vector, all zeros except for a
one in the position corresponding to xi ’s cluster.) We then draw xi from the corresponding Gaussian
N

(
c⊤i µ, 1

)
. The full hierarchical model is

µk ∼ N
(
0, σ2

)
, k = 1, . . . ,K,

ci ∼ Categorical(1/K, . . . , 1/K), i = 1, . . . , n,

xi | ci, µ ∼ N
(
c⊤i µ, 1

)
, i = 1, . . . , n.

For a sample of size n, the joint density of latent and observed variables is

p(µ, c, x) = p(µ)

n∏
i=1

p (ci) p (xi | ci, µ) .

The latent variables are z = {µ, c}, the K class means and n class assignments. Here, the evidence
is

p(x) =

∫
p(µ)

n∏
i=1

∑
ci

p (ci) p (xi | ci, µ) dµ. (9.1)
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The integrand in Equation 9.1 does not contain a separate factor for each µk. (Indeed, each µk appears
in all n factors of the integrated.)

Thus, the integral in Equation 9.1 does not reduce to a product of one-dimensional integrals over
the µk ’s. The time complexity of numerically evaluating the K-dimensional integral is O (Kn) (Since
the polynomial inside the integral is composed of n polynomials each with K terms, expanding this
polynomial will result in Kn terms).

If we distribute the product over the sum in 9.1 and rearrange, we can write the evidence as a sum
over all possible configurations c of cluster assignments,

p(x) =
∑
c

p(c)

∫
p(µ)

n∏
i=1

p (xi | ci, µ) dµ.

Here each individual integral is computable, thanks to the conjugacy between the Gaussian prior
on the components and the Gaussian likelihood. But there are Kn of them, one for each configuration
of the cluster assignments. Computing the evidence remains exponential in K, hence intractable.

9.2 Evidence Lower Bound

Given the aforementioned challenges of directly maximizing P (X; θ) in the presence of latent variables,
here we introduce an indirect approach that involves maximizing something called the Evidence Lower
Bound (ELBO), which is a core technique in variational inference. Let’s see how this is done. We can
introduce a new distribution q(z) and transform the logarithm of the evidence as follows:

logP (X; θ) = log

∫
P (X, z; θ) dz

= log

∫
P (X, z; θ) · q(z)

q(z)
dz

= log

∫
P (X, z; θ)

q(z)
q(z) dz

= logEq

[
P (X, z; θ)

q(z)

]
⩾ Eq log

P (X, z; θ)

q(z)

= Eq logP (X, z; θ)− Eq log q(z) .

ELBO

The inequality comes from the convexity of the logarithm function. Let’s subtract the logarithm of
the evidence from the ELBO and see what the difference between the two is:

logP (X; θ)− ELBO = logP (X; θ)− (Eq[logP (X, z; θ)]− Eq[log q(z)])

= Eq[logP (X; θ)]− Eq[logP (X, z; θ)] + Eq[log q(z)]

= Eq

[
log

P (X; θ)

P (X, z; θ)

]
+ Eq[log q(z)]

= Eq

[
log

q(z)

P (z|X; θ)

]
= KL(q(z)∥P (z|X; θ)).

Hence, maximizing the ELBO is essentially about minimizing the Kullback-Leibler divergence between
q(z) and P (z|X; θ). Therefore, the central concept of variational inference lies in identifying the
optimal q from a given distribution family.

Furthermore, based on the derivation above, it is also easy to see that the ELBO can be decomposed
into the log evidence and the difference between the Kullback-Leibler divergence of q(z) from P (z|X; θ),
that is:

ELBO = logP (X; θ)−KL(q(z) ∥ P (z|X; θ)).
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9.3 The Expectation-Maximization Algorithm

The Expectation Maximization (EM) algorithm is essentially a coordinate ascent that maximizes
ELBO(θ, qz).

(E-step) First, we optimize ELBO (θ, qz) over qz with fixed θ. Based on the previous decomposi-
tion of ELBO, we know:

ELBO(θ, qz) = logPX(X; θ)︸ ︷︷ ︸
unrelated to qz

−KL
(
qZ(·)∥PZ|X(· | X; θ)

)
.

For given θ, we denote the best qz maximizing ELBO as q∗z , and we have

q∗z(θ) ≜ argmax
qz

ELBO(θ, qz) = pz|x(· | x; θ).

(M-step) Next, we will optimize over θ with fixed qz. Suppose the current (old) parameter is θ′

and plug qz = q∗z (θ
′) = pz|x (· | x; θ′) into ELBO (θ, qz), and we aim to find

θ∗ ≜ argmax
θ

ELBO
(
θ, pz|x

(
· | x; θ′

))
.

Since ELBO (θ, qz) = Ez∼qz [log px,z(x, z; θ)]−Ez∼qx [log qz(z)]︸ ︷︷ ︸
The Entropy of qz

,

ELBO
(
θ, pz|x

(
· | x; θ′

))
= Ez∼pz|x(·|x;θ′) [log px,z(x, z; θ)] +H

(
pz|x

(
· | x; θ′

))︸ ︷︷ ︸
unrelated to θ

,

where H(p) represents the entropy of a distribution p. If we define

U
(
θ; θ′

)
≜ Ez∼pzx(·|x;θ′) [log px,z(x, z; θ)] ,

the optimal (new) becomes θ∗ = argmaxθ U (θ; θ′). The two steps are repeated until convergence.

9.4 Variational Auto-Encoder

Suppose we want to infer the parameters θ in such a model:

1. z ∼ N (0, I).

2. X ∼ N (D(z; θ), I), where D(·) is a Neural Network called decoder.

Unless D(·) is linear, the posterior probability P (z|X) does not have a closed-form expression. This
necessitates the adoption of the variational approach mentioned earlier, introducing q(z). In variational
autoencoders, q(z) is constrained to the family of isotropic Gaussian distributions and can be expressed
as:

q (zi | Xi) = N(µ(X; θ),Σ(X; θ)),

where µ(X; θ) and Σ(X; θ) are obtained through an encoder, which is also a neural network.
Therefore, the process of maximizing the evidence can also be achieved by maximizing the evidence

lower bound. Let’s review the ELBO, which can be decomposed as:

Ez∼q(z|X) logP (X | z; θ)−KL(q(z | X)∥p(z)).

This consists of two parts. Let’s analyze them one by one:

1. Reconstruction Loss: For this part Ez∼q(z|X) logP (X | z; θ), we can sample a z from q(z | X).

Note that P (X | z; θ) is Gaussian, and the logarithm of this term is proportional to 1
2∥x−D(z)∥2.

Therefore, the reconstruction loss can be approximated using mean squared error loss.

2. Variational Regularization Term: Another part involves minimizing KL(q(z | X)∥p(z)).
However, both q and p are normal distributions, which means the KL divergence between them
can be expressed in closed form.

Thus, we can train the variational autoencoder by maximizing the ELBO.
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9.5 Generative Adversarial Network

Generative Adversarial Networks involve a basic adversarial game between a generator Gθ and a
discriminator Dφ. The generator aims to generate fake data as realistically as possible, while the
discriminator aims to distinguish between real data and fake data generated by the generator. In terms
of probability models, the generative model minimizes the maximum likelihood of the discriminator,
as shown below:

min
Gθ

max
Dφ

EX,Y [Dφ(X)]Y [1−Dφ(X)]1−Y .

Here, X represents the observed data, which could be real or fake. Y denotes the label indicating
whether the data is real or fake, and in this context, it is a latent variable. The discriminator Dφ(X)
is used to estimate the probability that the data is real, i.e., P (Y = 1 | X). The generator, on the
other hand, generates data distribution when the data is fake, defined as Gθ(X) ≜ P (X | Y = 0).

Upon converting the likelihood to a logarithmic form, we can continue with the subsequent deriva-
tion:

min
Gθ

max
Dφ

EX,Y log [Dφ(X)]Y [1−Dφ(X)]1−Y

=min
Gθ

max
Dφ

{
EX|Y=1 log [Dφ(X)] + EX|Y=0 log [1−Dφ(Y )]

}
=min

Gθ

max
Dφ

{
EPdata

log [Dφ(X)] + EPGθ
log [1−Dφ(Y )]

}
.


