COMP 7070 Advanced Topics in AI and ML

February 27, 2024

Lecture 7: Generalization Error

Instructor: Yifan Chen Scribes: Hongduan Tian, Yi Ding Proof reader: Zhanke Zhou

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Error Decomposition

① Recall population risk and empirical risk. Given a distribution \mathcal{P} and a model function f, assume that a set of labeled data points sampled from the distribution,

- Population Risk: $\mathcal{R}(f) = \mathbb{E}_{x,y \sim \mathcal{P}} \ell(f(x), y);$
- Empirical Risk: $\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i).$
- (2) In practice, assume that $\hat{f} \in \mathcal{F}$ and a reference $\bar{f} \in \mathcal{F}^1$.
- (3) Now, we start to perform error decomposition.

$$\mathcal{R}(\hat{f}) = \underbrace{\left[\mathcal{R}(\hat{f}) - \hat{\mathcal{R}}(\hat{f})\right]}_{i.generalization} + \underbrace{\left[\hat{\mathcal{R}}(\hat{f}) - \hat{\mathcal{R}}(\hat{f})\right]}_{ii.optimization} + \underbrace{\left[\hat{\mathcal{R}}(\bar{f}) - \mathcal{R}(\bar{f})\right]}_{iii.concentration/generalization} + \underbrace{\mathcal{R}(\bar{f})}_{iv.approximationerror}.$$
(7.1)

Four components are included in Eq. (7.1). Among them, the generalization term contributes to achieving good performance on both training/testing sets, while the concentration term contributes to pushing empirical risk to the population risk.

- (4) Three problems in deep learning theory (DLT):
 - Representation: related to term iv;
 - Optimization: related to term *ii*;
 - Generalization: related to *i*, *iii*.

7.2 Generalization

Consider an infinite size of function space \mathcal{F} o.w. we can use union bound. Then, we can bound the space with *Rademacher Complexity*. The key spirit of Rademacher complexity, which focuses on a smaller proxy set, is similar to that of ε -net.

7.2.1 Un-normalized Rademacher Complexity

Given a collection of vectors \mathcal{V} , the un-normalized Rademacher complexity is defined as:

$$\operatorname{URad}(\mathcal{V}) := \mathbb{E}_{\varepsilon} \sup_{a \in \mathcal{V}} \langle a, \varepsilon \rangle. \tag{7.2}$$

¹Note that \bar{f} is not the optimal

7.2.2

Assume that $\mathcal{V} = \{(\ell(f(x_1), y_1), \ell(f(x_2), y_2), ..., \ell(f(x_n), y_n)) : f \in \mathcal{F}\}$, by applying Rademacher complexity to a dataset $\mathcal{S} = \{s_i = (x_i, y_i)_{i=1}^n$, then the Rademacher complexity of $\ell \circ \mathcal{F}_{|\mathcal{S}}$ is:

$$\operatorname{Urad}(\ell \circ \mathcal{F}_{|\mathcal{S}}) = \mathbb{E}_{\varepsilon} \sup_{u \in \ell \circ \mathcal{F}_{|\mathcal{S}}} \langle \varepsilon, u \rangle = \mathcal{E}_{\varepsilon} \sup_{f \in \mathcal{F}} \left[\sum_{i=1}^{n} \varepsilon_{i} \ell(f(x_{i}), y_{i}) \right].$$

Note that $\operatorname{Urad}(\ell \circ \mathcal{F}_{|\mathcal{S}})$ is a random variable, depending on (x_i, y_i) .

7.2.3

Here, we reload the notation $f(z_i) = \ell(f(x_i), y_i)$. Let $f(z) \in [a, b], \forall f \in \mathcal{F}$, with the probability at least $1 - \delta$, we then have:

$$\mathbb{E}_{z}f(z) - \frac{1}{n} \sum_{i=1}^{n} f(z_{i}) \leq \sup_{f \in \mathcal{F}} \mathbb{E}f(z) - \frac{1}{n} \sum_{i=1}^{n} f(z_{i})$$

$$\leq \mathbb{E}_{z_{i}} \left(\sup_{f \in \mathcal{F}} \mathbb{E}f(z) - \frac{1}{n} \sum_{i=1}^{n} f(z_{i}) \right) + (b - a) \cdot \sqrt{\frac{\log 1/\delta}{2n}}.$$

Remark. Based on the above summary, we can further have $\left|\sup_{f\in\mathcal{F}}\mathbb{E}f(z)-\frac{1}{n}\sum_{i=1}^n f(z_i)-\mathbb{E}_{z_i}\right|\leq 2(b-a)\sqrt{\frac{\log 1/\delta}{2n}}$.

Lemma 7.1. Given two functions f, g, we have $\sup_a f(a) + g(a) \le \sup_{a^*} (\sup_a f(a) + g(a^*))$.

Proof of Lemma 7.1

Proof. Firstly, we know that $\forall \varepsilon, \exists a^*$ that satisfies

$$\sup_{a} f(a) + g(a) \le f(a^*) + g(a^*) + \varepsilon.$$

Then, we know

$$\sup_{a} f(a) + g(a^*) \ge f(a^*) + g(a^*) \ge \sup_{a} f(a) + g(a) - \varepsilon.$$

Thus,

$$RHS = \sup_{a^*} \left(\sup_a f(a) + g(a^*) \right) \ge \sup_a f(a) + g(a).$$

Lemma 7.2. Given two functions f, g, we have $-\sup_a (f(a) + g(a)) \le \sup_{a^*} (-\sup_a f(a) - g(a^*))$.

Proof of Remark

Proof. Firstly, we know that $\sup_{f \in \mathcal{F}} \mathbb{E}f(z) - \frac{1}{n} \sum_{i=1}^{n} f(z_i) \sim \mathsf{subG}$ and it is a function of $z \sim z_n$ with the bounded difference. Then, we have

$$\left| \sup_{f} \left(\mathbb{E}_{z} f(z) - \frac{1}{n} \sum_{i=1}^{n} f(z_{i}) \right) - \sup_{f'} \left(\mathbb{E}_{z} f'(z) - \frac{1}{n} \sum_{i=1}^{n} f'(z_{i}^{\setminus j}) \right) \right|, \tag{7.3}$$

where $z_i^{\setminus j} = \{z_1, z_2, ..., z_n\}$. For convenience, we reload the notations as following

$$\mathbb{E}f = \mathbb{E}_{z}f(z),$$

$$\mathbb{E}_{n} = \mathbb{E}_{z_{1}\sim z_{n}},$$

$$\hat{\mathbb{E}}_{n}f = \frac{1}{n}\sum_{i=1}^{n}f(z_{i}),$$

$$\mathbb{E}'_{n} = \mathbb{E}_{z'_{1}\sim z'_{n}},$$

$$\hat{\mathbb{E}}'_{n} = \frac{1}{n}\sum_{i=1}^{n}f(z'_{i}).$$

Then, Eq.(7.3) can be further formulated as:

$$\left| \sup_{f} \left(\mathbb{E}_{z} f(z) - \frac{1}{n} \sum_{i=1}^{n} f(z_{i}) \right) - \sup_{f'} \left(\mathbb{E}_{z} f'(z) - \frac{1}{n} \sum_{i=1}^{n} f'(z_{i}^{\setminus j}) \right) \right|$$

$$= \left| \sup_{f} \left(\mathbb{E} f - \hat{\mathbb{E}} f \right) - \sup_{f'} \left(\mathbb{E} f' - \hat{\mathbb{E}}_{n} f' + \frac{1}{n} f'(z_{j}) - \frac{1}{n} f'(z_{j}^{\setminus j}) \right) \right|$$

$$\leq \sup_{f''} \left| \sup_{f} \left(\mathbb{E}_{f} - \hat{\mathbb{E}}_{n} f \right) - \sup_{f'} \left(\mathbb{E} f' - \hat{\mathbb{E}}_{n} f' \right) - \frac{1}{n} \left(f''(z_{i}) - f''(z_{i}^{\setminus j}) \right) \right|$$

$$(7.4)$$

With Lemma 7.2, we have

$$\left| \sup_{f} \left(\mathbb{E}f - \hat{\mathbb{E}}_{n} f \right) \right| = \left| C - \sup_{a} \left(f(a) + g(a) \right) \right|$$

$$\leq \sup_{a^{*}} \left| C - \sup_{a} f(a) - g(a^{*}) \right|.$$

$$(7.5)$$

Similarly, we have

$$\begin{split} -C + \sup_a \left(f(a) + g(a) \right) &\leq -C + \sup_{a^*} \left(\sup_a f(a) + g(a^*) \right) \\ &= \sup_{a^*} \left(-C + \sup_a f(a) + g(a^*) \right) \\ &\leq \sup_{a^*} \left| C - \sup_a f(a) - g(a^*) \right| \end{split}$$

Thus, we have

$$\sup_{f''} \left| \frac{1}{n} f''(z_i) - f''(z_i') \right| \le \frac{1}{n} (b - a).$$

Since $\sup_{f \in \mathcal{F}} \mathbb{E}f(z) - \frac{1}{n} \sum_{i=1}^{n} f(z_i)$ is sub-Gaussian with $\sigma^2 \leq \frac{(b-a)^2}{4n}$, then

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}\mathbb{E}f(z) - \frac{1}{n}\sum_{i=1}^{n}f(z_i) - \mathbb{E}\left(\sup_{f\in\mathcal{F}}\mathbb{E}f(z) - \frac{1}{n}\sum_{i=1}^{n}f(z_i)\right) > t\right) \le \exp\left(-\frac{t^2}{2\sigma^2}\right) = \delta.$$

Thus,

$$t^2 = (b - a)^2 \frac{\log 1/\delta}{2n}.$$

7.2.4

Have shown that $\sup_{f \in \mathcal{F}} \mathbb{E}f(z) - \frac{1}{n} \sum_{i=1}^n f(z_i) \leq \mathbb{E}_n \left(\sup_{f \in \mathcal{F}} \mathbb{E}f(z) - \frac{1}{n} \sum_{i=1}^n f(z_i) \right) + (b-a) \sqrt{\frac{\log 1/\delta}{2n}}$, we need to further show $\mathbb{E}_n \left(\sup_{f \in \mathcal{F}} \mathbb{E}f(z) - \frac{1}{n} \sum_{i=1}^n f(z_i) \right) \leq \frac{2}{n} \mathbb{E}_n \mathrm{URad}(\mathcal{F})$.

With the aforementioned results, we have

$$\sup_{f \in \mathcal{F}} \mathbb{E}f(z) - \frac{1}{n} \sum_{i=1}^{n} f(z_i) \leq \frac{2}{n} \operatorname{URad}(\mathcal{F}) + \frac{2}{n} (b-a) \sqrt{\frac{n \log 1/\delta}{2}} + (b-a) \sqrt{\frac{\log 1/\delta}{2n}}$$
$$= \frac{2}{n} \operatorname{URad}(\mathcal{F} + 3(b-a) \sqrt{\frac{\log 1/\delta}{2n}}.$$

Proof. Firstly,

$$\mathbb{E}_{n}\left(\sup_{f}\mathbb{E}f(z) - \hat{\mathbb{E}}_{n}f\right) \leq \mathbb{E}_{n}\left(\mathbb{E}f^{*} - \hat{\mathbb{E}}_{n}f^{*} + \varepsilon\right)$$

$$= \mathbb{E}_{n}\left(\mathbb{E}'_{n}\hat{\mathbb{E}}'_{n}f^{*} - \hat{\mathbb{E}}_{n}f^{*}\right) + \varepsilon$$

$$= \mathbb{E}_{n}\mathbb{E}'_{n}\left(\hat{\mathbb{E}}'_{n}f^{*} - \hat{\mathbb{E}}_{n}f^{*}\right) + \varepsilon$$

$$\leq \mathbb{E}_{n}\mathbb{E}'_{n}\sup_{f}\left(\hat{\mathbb{E}}'_{n}f - \hat{\mathbb{E}}_{n}f\right) + \varepsilon.$$

Then.

$$\mathbb{E}_{n}\mathbb{E}'_{n}\sup_{f}\left(\hat{\mathbb{E}}'_{n}f - \hat{\mathbb{E}}_{n}f\right) = \mathbb{E}\sup_{f}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\left(f(z'_{i}) - f(z_{i})\right)$$

$$\leq \mathbb{E}_{\varepsilon}\mathbb{E}_{n}\mathbb{E}'_{n}\sup_{f,f'}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\left(f(z'_{i}) - f'(z_{i})\right)$$

$$= \mathbb{E}_{\varepsilon}\mathbb{E}'_{n}\sup_{f}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f(z'_{i}) + \mathbb{E}_{\varepsilon}\mathbb{E}_{n}\sup_{f'}\frac{1}{n}\sum_{i=1}^{n}(-\varepsilon_{i})f'(z_{i})$$

$$= \frac{2}{n}\operatorname{URad}(\mathcal{F}).$$

7.2.5

 $\ell \circ \mathcal{F}_{|\mathcal{S}}$: Let $\ell : \mathbb{R}^n \to \mathbb{R}^n$ be a vector of univariate L-lipschitz functions. Then $\mathrm{URad}(\ell \circ V) \leq L \cdot \mathrm{URad}(V)$.

Proof. The idea of the proof is to 'de-symmetrize' and get a difference of coordinates to which we can apply the definition of L. To start,

$$\operatorname{URad}(\ell \circ V) = \mathbb{E} \sup_{u \in V} \sum_{i} \epsilon_{i} \ell_{i} (u_{i})$$

$$= \frac{1}{2} \mathbb{E} \sup_{u, w \in V} \left(\ell_{1} (u_{1}) - \ell_{1} (w_{1}) + \sum_{i=2}^{n} \epsilon_{i} (\ell_{i} (u_{i}) + \ell_{i} (w_{i})) \right)$$

$$\leq \frac{1}{2} \mathbb{E} \sup_{u, w \in V} \left(L |u_{1} - w_{1}| + \sum_{i=2}^{n} \epsilon_{i} (\ell_{i} (u_{i}) + \ell_{i} (w_{i})) \right).$$

To get rid of the absolute value, for any ϵ , by considering swapping u and w,

$$\sup_{u,w \in V} \left(L |u_1 - w_1| + \sum_{i=2}^{n} \epsilon_i (\ell_i (u_i) + \ell_i (w_i)) \right)$$

$$= \max \left\{ \sup_{u,w \in V} \left(L (u_1 - w_1) + \sum_{i=2}^{n} \epsilon_i (\ell_i (u_i) + \ell_i (w_i)) \right), \right.$$

$$\left. \sup_{u,w} \left(L (w_1 - u_1) + \sum_{i=2}^{n} \epsilon_i (\ell_i (u_i) + \ell_i (w_i)) \right) \right\}$$

$$= \sup_{u,w \in V} \left(L (u_1 - w_1) + \sum_{i=2}^{n} \epsilon_i (\ell_i (u_i) + \ell_i (w_i)) \right).$$

As such,

$$\operatorname{URad}(\ell \circ V) \leq \frac{1}{2} \underset{\epsilon}{\mathbb{E}} \sup_{u,w \in V} \left(L |u_{1} - w_{1}| + \sum_{i=2}^{n} \epsilon_{i} \left(\ell_{i} \left(u_{i} \right) + \ell_{i} \left(w_{i} \right) \right) \right)$$

$$= \frac{1}{2} \underset{\epsilon}{\mathbb{E}} \sup_{u,w \in V} \left(L \left(u_{1} - w_{1} \right) + \sum_{i=2}^{n} \epsilon_{i} \left(\ell_{i} \left(u_{i} \right) + \ell_{i} \left(w_{i} \right) \right) \right)$$

$$= \underset{\epsilon}{\mathbb{E}} \sup_{u \in V} \left[L \epsilon_{1} u_{1} + \sum_{i=2}^{n} \epsilon_{i} \ell_{i} \left(u_{i} \right) \right].$$

Repeating this procedure for the other coordinates gives the bound.

$$\operatorname{URad}(\ell \circ V) \leq \underset{\epsilon}{\mathbb{E}} \sup_{u} \left(L \sum_{i=1}^{n} \epsilon_{i} u_{i} \right)$$
$$= L \cdot \operatorname{URad}(V)$$

Revisiting our overloaded composition notation:

$$(\ell \circ f) = ((x, y) \mapsto \ell(-yf(x))),$$

 $\ell \circ \mathcal{F} = \{\ell \circ f : f \in \mathcal{F}\}.$