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7.1 Error Decomposition

(D Recall population risk and empirical risk. Given a distribution P and a model function f, assume
that a set of labeled data points sampled from the distribution,

e Population Risk: R(f) =E, ,pl(f(x),y);
e Empirical Risk: ﬁ(f) = %Z?:l C(f(xi), yi)-

(2) In practice, assume that f € F and a reference f € F'.
(3) Now, we start to perform error decomposition.

R(f) = [RU)-RP)|+ [RDH-RH|+  [RO-RD]  +  RG) . (@
i.generalization ii.optimization tit.concentration/generalization (v-approximationerror

Four components are included in Eq. (7.1). Among them, the generalization term contributes to
achieving good performance on both training/testing sets, while the concentration term contributes
to pushing empirical risk to the population risk.

@ Three problems in deep learning theory (DLT):

e Representation: related to term iv;
e Optimization: related to term iz;

e Generalization: related to i, 3.

7.2 Generalization

Consider an infinite size of function space F o.w. we can use union bound. Then, we can bound the
space with Rademacher Complezity. The key spirit of Rademacher complexity, which focuses on a
smaller proxy set, is similar to that of e-net.

7.2.1 Un-normalized Rademacher Complexity

Given a collection of vectors V, the un-normalized Rademacher complexity is defined as:

URad(V) := Essup,ey < a,e > . (7.2)

!Note that f is not the optimal
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7.2.2
Assume that V = {(¢(f(z1),y1), £(f(x2),92), ..., £(f(xn),yn)) : f € F}, by applying Rademacher com-
plexity to a dataset S = {s; = (%, yi}j-;, then the Rademacher complexity of £ o Fis is:

n

Urad(f o Fis) = Egsupuegof‘s < &,u>=ESupser [Z el(f(xi),ys)
i=1

Note that Urad(¢ o Fis) is a random variable, depending on (w;, y;).

7.2.3

Here, we reload the notation f(z;) = £(f(zi),v:). Let f(2) € [a,b],Vf € F, with the probability at
least 1 — §, we then have:

S E. (SuprfEﬂz) - Zf@)) +(b—a)- 10%;/ o

<

Remark. Based on the above summary, we can further have |supfe;Ef(z) — L350 f(z) — E
log1/6

2(b — )/ B2,

Lemma 7.1. Given two functions f,g, we have sup, f(a) + g(a) < sup,- (sup,f(a) + g(a*)).

Proof of Lemma 7.1
Proof. Firstly, we know that Ve, da* that satisfies

sup, f(a) + g(a) < f(a*) + g(a”) +&.
Then, we know
sup, f(a) +g(a”) = f(a®) + g(a”) = sup, f(a) + g(a) —&.
Thus,
RHS = sup,- (sup, f(a) + g(a”)) = sup, f(a) + g(a).

Lemma 7.2. Given two functions f,g, we have —sup, (f(a)+ g(a)) < sup,- (—sup, f(a) — g(a*)).
Proof of Remark

Proof. Firstly, we know that sup e 7Ef(2) — % oy f(z) ~ subG and it is a function of z ~ z, with
the bounded difference. Then, we have

supj (Ezf(z) - % Zf(zﬁ) —sup (Ezf’(z) _ % Zfl(zz\j))
=1 i=1

: (7.3)

where zi\j = {21, 22, ..., zn }. For convenience, we reload the notations as following
Ef =E.f(2),
En = Ezlwznv
1 n
Bnf =3 f(z),
=1
B =Bfar
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Then, Eq.(7.3) can be further formulated as:

sup ¢ (Ezf(z) - iZf(%)) —supp (Ezf/(z) — :szl(zz\])> ‘
=1

=1

(7.4)

supy (Ef — Ef ) - sup) (Ef’ “Eaf 4 f () - :Lf'(z;)>
") - ')

sup (B~ Bof) — supp (Bf ~Bof') — (1

S Supf//

With Lemma 7.2, we have
jsupy (Bf ~ Eaf)| = |C = sup, (f(a) + g(a)| 3
< sup, |C = sup, f(a) — g(a")!.

Similarly, we have
—C +sup, (f(a) + g(a)) < —C + sup,- (sup, f(a) + g(a*))

= sup,+ (—C + sup, f(a) + g(a®))

C —sup, f(a) — g(a”)]

_|_
_|_

< sup,

Thus, we have
1 " " /

sup |11 () £ ()| <

n

Since sup pe rFEf(2) — LS | f(2) is sub-Gaussian with o2 < ©°

1 Zn:f(zi)> > t) < exp (—;;) =4.

P (supfe;Ef(z) - % Zf(zz) —E (Supfe]_—IEf(z) -
i=1 i=1

Thus,
2= (b a)zM.
2n
O
7.2.4
L F) + (0 a)y/ 5L,

Have shown that suprFEf(Z) — %ZQLI f(zi) <E, (SquefEf(Z) ~1
1S f(z)) < 2E,URad(F).

we need to further show E,, (supc zEf(2) — &
With the aforementioned results, we have
log1/6

1 2 2 Inlog1/s
sup re rFEf(2) — - ;f(zi) < EURad(}") + ﬁ(b_ a) nog/ +(b—a) ™

2 log 1/5
= 2 URad(F + 3(b— a)y ) 220
n 2n

Proof. Firstly,
E, (suprf(z) — Enf> <E, (Ef* Bt 4 5)
=B, (BB, f" —Baf") +¢
= EE), (B, 17— £af") +¢
< E,E,sup; (I‘E;f _ &, ) te.
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Then,

IEnIE/nsupf (IAE/nf—IAEnf> Esup;— ZS’( z;) — Z))

I 1 7 !
< EeEnEnsuPﬂf’ n Z € (f(zz) —f (22)>
=1
n

= E.E, nSUDs Zazf ) +EE supf/lZ(—El)fl(zl)

=1

— 2URad(F).
n

7.2.5

lo Fis: Let £ : R" — R™ be a vector of univariate L-lipschitz functions. Then URad({o V) <
L - URad(V).

Proof. The idea of the proof is to ’de-symmetrize’ and get a difference of coordinates to which we can
apply the definition of L. To start,

URad(¢ o V) = Esup el (u;)
( ueV Z

= 5 E sup (51 (ur) = Ly (w1) + > i (€ () + £ (wi))>

€2:
nyweV i—9

1
§§E sup <L|u1—w1\+262 (u;) + 4 (w )))

€2:n y,weV

To get rid of the absolute value, for any €, by considering swapping v and w,

sup (Lm w1!+261 (u;) + i (w )))

u,weV

:max{ Su&/( up — wy +Z€’ (u;) + 4; (w ))),
Sup( wy — Ug +Z€z (ug) + €; (w )))}
= sup ( U — Wy +Z€l (u;) + 4; (w )))

u,weV

As such,

€2:n qy weV

1
URad(/oV) < = E sup <L|u1 w1|+261 i (ug) + 4 (w )))

=2
zfnui}jgv( ue wl+Zez () + £ (v >>>
= [E sup Lelul—&—Ze” (u) | -
€ ueV i—2

Repeating this procedure for the other coordinates gives the bound.

URad(fo V) sup (L Z ezuz>

= L - URad(V)
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Revisiting our overloaded composition notation:

(Lo f) = ((z,y) = -y f(x))),
loF={lof:feF}
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