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6.1 Johnson-Lindenstrauss Lemma

In this section, we are going to learn about Johnson-Lindenstrauss Lemma, which has been highly
impactful in the design of algorithms for high-dimensional delta.

Theorem 6.1 (JL lemma). For any e € (0,1) and any X € R? for | X| = n finite, there exists an
embedding f : X — R™ for m = O(¢~%logn) such that

va,y € X, (1—¢)llz —yll3 < |If (@) = I < (1 + )l —ylf5. (6.1)

A simple intuition of Theorem 6.1 is that the distance between the embeddings of two data points,
which are randomly sampled from space R%, is bounded, and the bound is related to the distance of
the two data points in R? space. In other words, a set of data points in a high-dimensional space can
be embedded into a much lower dimension in a way that the distance information is nearly preserved.

With the desirable property of the Johnson-Lindenstrauss lemma in Theorem 6.1, the algorithms
that contain heavy matrix computation can be improved:

e Approximate Matrix Multiplication (AMM). Consider two matrix A € R"*" and B €
R™*" the complexity of the multiplication AB is O(n3). According to JL lemma, by embedding
A and B to lower dimension with the transformation f : R™ — R™, where m < n, we can
approximate AB with f(A)f(B). Then, the complexity is reduced to O(n?m).

e Graph Convolutional Network (GCN). In graph convolutional network, given an adjacency
matrix A € RV*N the hidden state of the last layer H'™! € RNX4™ and a set of weights
W ¢ Rémxdim the output of current layer can be calculated as: AH!'"'W. In this case,
matrices with lower dimensions can also be applied for efficient computation: ASS ' H!™'W,

where § € R 4 < d.

e Attention Calculation. Attention mechanism is also computationally dense. Given query
matrix @, key matrix K and value matrix V', the attention features H € R%*¢ can be calculated
in the way:

7l
H = softmax (Q\/g{ ) -V.

By introducing S € R¥? ¢ < d, H can be further calculated as:

T

Vd

6.1.1 Distributed Johnson-Lindenstrauss Lemma (DJL).

H = softmax <Q > SS'v.

Lemma 6.2. For any e,6 € (0,1/2) and integer d > 1, there exists a distribution D, s over matrices
I € R™*4 for m = O(e=21og(1/6)) such that for any fived z € R with ||z||s = 1,

Priep, 5 ([|IL][3 — 1] > &) < 6.
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Based on Lemma. 6.2, assume that § < n—IQ, Z = %, with other mild assumptions, we have:

Exy = {||[HZ]]* - 1| > €}
= {|II(X = Y)|]> = [|X = Y|]?| > ¢||X - Y|*}.

n(n—1)
2

Since |X| = |Y| = n, we then have pairs. Then, we have:

nin—1
P(|JExy | <Y PExy) = (2)5.
XY X,Y

Thus, with the probability of least 1 — ¢, the JL lemma would hold.

6.2 Sketching Method

6.2.1 Sketch

Let replace a vector/matrix z/X by its sketch ITz/XII", then we have:
Hz|? -1 < 2"z — 1.

When z 'z = 1 holds, we have to ensure that EII"II = I, where I denotes the identity matrix. Here,
we introduce two applications:

e Coordinate. Consider a special case where IT € R™™_ then it will be uniformly distributed in
the set {v/de;}%,. Then, we have:
1
EIT'II = y > deje] =1.
i=1
e AMDM. The other application is approximate matrix multiplication, such as

B'O'IC ~ B'Cyyn if m<<d.

6.3 Matrix Concentration Sketching

6.3.1 Sub-Gaussian Random Variable

Definition 6.3 (Moment Generating Function, MGF). Given a random variable X ~ subG(c?),
where B(X) = 0, for VA € R, the moment generating function satisfies:

o2 )\2

Eexp (AX — 1)) < exp(T).

Lemma 6.4. Let X ~ subG(c?), then for any p > 1,

E[|IX]] < (20%)/%pD(5).

In particular,

E[|IX[P] < o'/ /.
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Proof. We first calculate E[|.X |P]:
E[|X]7] :/ PXP > t)dt

0

_/ P(|X| > tY/7)dt
0

S tQ/P
< 2/ e 27 dt
0

o0
— (2 2\2/p / —u p/2—1d _
(20%)“Pp ; e “u u, u 552

t2/p

= (26%)P?pI'(p/2),  TD(n)= / " eyl dy = (n— 1)
0

With the conditions: T'(p/2) < (p/2)P/? and p'/P < e'/¢ for any p > 2, we further have:

((20%)P/2pT(p/2))"/P = ((20%)7/%)/Pp!/P(D (p/2)) 1/
= V20 - p!/P(T(p/2))"/?
< V24/p/2
=gell\/p.

Where K> is the sub-Gaussian norm and Ks ~ o. For a large K5, X is not very sub-Gaussian.

[ X||w, = Ka.

6.3.2 Sub-Gaussian Random Vector X.

Definition 6.5. For Vz € R?, < X,z > is sub-Gaussian. Then, we have

1 X|[w, = sup [[ <X,z > |[|v,.
reSd—1

For coordinate < X,z >= \/&Z?Zl will,—s), we then have || X||y, ~ V.

6.4

Given a matrix II with independent sub-Gaussian rows, where %EHTH = I, we then have:

Vm = CVd =t < Smin(IT) < Smax(I) < vV/m + CVd + t,

with the probability at least 1 — 2 exp(—ct?).
(D e-net to approximate S4!

Definition 6.6 (e-net). Given N'C S~ ! and Vo € S, we can have d(z,y) < €, where y € N¢ and
d(-,-) is a distance measure.

A special case of e-net is covering number N (8?1, ¢), which is the minimal cardinality of M.

Bound of V(8% ! ¢) Here, we explore the bound of A(S41,¢).
e Consider the maximal e-separated subset of S¥~1, then for Yy, v, d(y1,y2) > €.

e Such a subset aforementioned is a e-net, o.w. 3z € S, d(x,;) > . Then, the point can be
added to the subset.
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e Based on the content above, we can formulate the relationship as follows:
€ €
-B<(1+2)B

where B denotes the volume of a unit £, ball of R%. Then, we have:

Prove 1 — ¢ < Spin(Il) < Spax(IT) < 1+ 6. The proof can be equivalently transformed to prove
[IITTII — I|| < max(d,62).

Proof.
Hz|| =1 = |Z - 1| < max {|Z - 1],|Z — 1\2}.

When Z € [0,2], then
max {|Z —1|,|1Z =1} = |Z - 1| < |Z* — 1]
If 6 > 1, then |Z — 1| <1 < §; otherwise,
Z-1 <122 -1
= ‘xTHTHx—a:Tx’
- ‘:UT(HTH - I)x‘

< ||t — 11| < max(4, 62)
=.

When Z > 2, then |Z — 1> < |Z? — 1| < max(9,6%) = 4.
Thus, we can say that 1 — § < Spin(II) < Spmax(IT) < 14§ holds for Va, |||TIz|| — 1| < 6. d

The bound can be given up to a constant factor with a *-net. Consider 3z; € S, ||4]| =
x{ Az, 3y € N1,d(z1,y) < 1, we then have
4

|< Azy, 1 > — < Ay,y >| = |[< Az, 21 —y > + < A(z1 —9),y >|
< [Al[ - |21 - |21 = ylll + [|A]] - [Jz1 = yl] - [yl

= 2||A]| - ||z1 — yl|

= 2||A]| - d(z1,y)
1

< 4]

=< Ay, y ><< Axy, 21 > —5||A]| = 3||4]|-
= ||A|l| <2 yl Ay < 2- MaXye A, y ' Ay.

1
The above conclusion is also equivalent to:

2 - max
CCE./\/i
4

1
—||TLz||? — 1‘ <e.
m

oncentration: x||” =) ._1m<1ll,x > where Z1 =< 1l;,z > an - = 1.
C i Iz||? i1 II 2, where Z II dEZ? =1

(3 Union bound:
P >S )<l 2 =
maX —_ . . eX S — .
reN) 2] =1 P 12802

1 m
EZZZZ(SU) -1
=1




