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6.1 Johnson-Lindenstrauss Lemma

In this section, we are going to learn about Johnson-Lindenstrauss Lemma, which has been highly
impactful in the design of algorithms for high-dimensional delta.

Theorem 6.1 (JL lemma). For any ε ∈ (0, 1) and any X ∈ Rd for |X| = n finite, there exists an
embedding f : X → Rm for m = O(ε−2 log n) such that

∀x, y ∈ X, (1− ε)||x− y||22 ≤ ||f(x)− f(y)||22 ≤ (1 + ε)||x− y||22. (6.1)

A simple intuition of Theorem 6.1 is that the distance between the embeddings of two data points,
which are randomly sampled from space Rd, is bounded, and the bound is related to the distance of
the two data points in Rd space. In other words, a set of data points in a high-dimensional space can
be embedded into a much lower dimension in a way that the distance information is nearly preserved.

With the desirable property of the Johnson-Lindenstrauss lemma in Theorem 6.1, the algorithms
that contain heavy matrix computation can be improved:

• Approximate Matrix Multiplication (AMM). Consider two matrix A ∈ Rn×n and B ∈
Rn×n, the complexity of the multiplication AB is O(n3). According to JL lemma, by embedding
A and B to lower dimension with the transformation f : Rn → Rm, where m < n, we can
approximate AB with f(A)f(B). Then, the complexity is reduced to O(n2m).

• Graph Convolutional Network (GCN). In graph convolutional network, given an adjacency
matrix A ∈ RN×N , the hidden state of the last layer Ht−1 ∈ RN×dim and a set of weights
W ∈ Rdim×dim, the output of current layer can be calculated as: AHt−1W . In this case,
matrices with lower dimensions can also be applied for efficient computation: ASS⊤Ht−1W ,

where S ∈ Rd×d
′
, d

′
< d.

• Attention Calculation. Attention mechanism is also computationally dense. Given query
matrix Q, key matrix K and value matrix V , the attention features H ∈ Rd×d can be calculated
in the way:

H = softmax

(
Q ·K⊤
√
d

)
· V .

By introducing S ∈ Rd×d
′
, d

′
< d, H can be further calculated as:

H = softmax

(
Q ·K⊤
√
d

)
SS⊤V .

6.1.1 Distributed Johnson-Lindenstrauss Lemma (DJL).

Lemma 6.2. For any ε, δ ∈ (0, 1/2) and integer d > 1, there exists a distribution Dε,δ over matrices
Π ∈ Rm×d for m = O(ε−2 log(1/δ)) such that for any fixed z ∈ R with ||z||2 = 1,

PΠ∼Dε,δ
(|||Πz||22 − 1| > ε) < δ.
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Based on Lemma. 6.2, assume that δ ≤ 1
n2 , Z = X−Y

||X−Y || , with other mild assumptions, we have:

EX,Y =
{∣∣||ΠZ||2 − 1

∣∣ > ε
}

=
{∣∣||Π(X − Y )||2 − ||X − Y ||2

∣∣ > ε||X − Y ||2
}
.

Since |X| = |Y | = n, we then have n(n−1)
2 pairs. Then, we have:

P

⋃
X,Y

EX,Y

 ≤
∑
X,Y

P (EX,Y ) =
n(n− 1)

2
δ.

Thus, with the probability of least 1− c, the JL lemma would hold.

6.2 Sketching Method

6.2.1 Sketch

Let replace a vector/matrix x/X by its sketch Πx/XΠ⊤, then we have:

||Πz||2 → 1 ⇐⇒ z⊤Π⊤Πz → 1.

When z⊤z = 1 holds, we have to ensure that EΠ⊤Π = I, where I denotes the identity matrix. Here,
we introduce two applications:

• Coordinate. Consider a special case where Π ∈ R1×m, then it will be uniformly distributed in
the set {

√
dei}di=1. Then, we have:

EΠ⊤Π =
1

d

d∑
i=1

deie
⊤
i = I.

• AMM. The other application is approximate matrix multiplication, such as

B⊤Π⊤ΠC ≈ B⊤Cd×n if m << d.

6.3 Matrix Concentration Sketching

6.3.1 Sub-Gaussian Random Variable

Definition 6.3 (Moment Generating Function, MGF). Given a random variable X ∼ subG(σ2),
where E(X) = 0, for ∀λ ∈ R, the moment generating function satisfies:

E exp (λ(X − µ)) ≤ exp(
σ2λ2

2
).

Lemma 6.4. Let X ∼ subG(σ2), then for any p ≥ 1,

E[|X|p] ≤ (2σ2)p/2pΓ(
p

2
).

In particular,

E[|X|p]1/p ≤ σe1/e
√
p.
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Proof. We first calculate E[|X|p]:

E[|X|p] =
∫ ∞

0
P(|X|p > t)dt

=

∫ ∞

0
P(|X| > t1/p)dt

≤ 2

∫ ∞

0
e−

t2/p

2σ2 dt

= (2σ2)2/pp

∫ ∞

0
e−uup/2−1du, u = − t2/p

2σ2

= (2σ2)p/2pΓ(p/2), Γ(n) =

∫ ∞

0
e−uun−1du = (n− 1)!.

With the conditions: Γ(p/2) ≤ (p/2)p/2 and p1/p ≤ e1/e for any p ≥ 2, we further have:

((2σ2)p/2pΓ(p/2))1/p = ((2σ2)p/2)1/pp1/p(Γ(p/2))1/p

=
√
2σ · p1/p(Γ(p/2))1/p

≤
√
2
√
p/2

= σe1/e
√
p.

Where K2 is the sub-Gaussian norm and K2 ∼ σ. For a large K2, X is not very sub-Gaussian.

||X||Ψ2 = K2.

6.3.2 Sub-Gaussian Random Vector X.

Definition 6.5. For ∀x ∈ Rd, < X,x > is sub-Gaussian. Then, we have

||X||Ψ2 := sup
x∈Sd−1

|| < X,x > ||Ψ2 .

For coordinate < X,x >=
√
d
∑d

i=1 xiI{ω=i}, we then have ||X||Ψ2 ∼
√
d.

6.4

Given a matrix Π with independent sub-Gaussian rows, where 1
mEΠ⊤Π = I, we then have:

√
m− C

√
d− t ≤ Smin(Π) ≤ Smax(Π) ≤

√
m+ C

√
d+ t,

with the probability at least 1− 2 exp(−ct2).
1○ ε-net to approximate Sd−1

Definition 6.6 (ε-net). Given N ⊆ Sd−1 and ∀x ∈ Sd−1, we can have d(x, y) ≤ ε, where y ∈ N ε and
d(·, ·) is a distance measure.

A special case of ε-net is covering number N (Sd−1, ε), which is the minimal cardinality of Nε.

Bound of N (Sd−1, ε) Here, we explore the bound of N (Sd−1, ε).

• Consider the maximal ε-separated subset of Sd−1, then for ∀y1, y2, d(y1, y2) > ε.

• Such a subset aforementioned is a ε-net, o.w. ∃x ∈ Sd−1, d(x, yi) > ε. Then, the point can be
added to the subset.
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• Based on the content above, we can formulate the relationship as follows:∑ ε

2
B ≤ (1 +

ε

2
)B,

where B denotes the volume of a unit ℓ2 ball of Rd. Then, we have:

|Nε|(
ε

2
)d ≤ (1 +

ε

2
)d

Prove 1 − δ ≤ Smin(Π) ≤ Smax(Π) ≤ 1 + δ. The proof can be equivalently transformed to prove
||Π⊤Π− I|| ≤ max(δ, δ2).

Proof.
|||Πx|| − 1| ≡ |Z − 1| ≤ max

{
|Z − 1|, |Z − 1|2

}
.

When Z ∈ [0, 2], then

max
{
|Z − 1|, |Z − 1|2

}
= |Z − 1| ≤ |Z2 − 1|.

If δ > 1, then |Z − 1| ≤ 1 < δ; otherwise,

|Z − 1| ≤ |Z2 − 1|

=
∣∣∣x⊤Π⊤Πx− x⊤x

∣∣∣
=
∣∣∣x⊤(Π⊤Π− I)x

∣∣∣
≤ ||Π⊤Π− I|| ≤ max(δ, δ2)

= δ.

When Z > 2, then |Z − 1|2 ≤ |Z2 − 1| ≤ max(δ, δ2) = δ.
Thus, we can say that 1− δ ≤ Smin(Π) ≤ Smax(Π) ≤ 1 + δ holds for ∀x, |||Πx|| − 1| ≤ δ.

The bound can be given up to a constant factor with a 1
4-net. Consider ∃x1 ∈ Sd−1, ||A|| =

x⊤1 Ax1, ∃y ∈ N 1
4
, d(x1, y) ≤ 1

4 , we then have

|< Ax1, x1 > − < Ay, y >| = |< Ax1, x1 − y > + < A(x1 − y), y >|
≤ ||A|| · ||x1|| · ||x1 − y|||+ ||A|| · ||x1 − y|| · ||y||
= 2||A|| · ||x1 − y||
= 2||A|| · d(x1, y)

≤ 1

2
||A||.

⇒< Ay, y >≤< Ax1, x1 > −1
2 ||A|| =

1
2 ||A||.

⇒ ||A|| ≤ 2 · y⊤Ay ≤ 2 ·maxy∈N 1
4

y⊤Ay.

The above conclusion is also equivalent to:

2 · max
x∈N 1

4

∣∣∣∣ 1m ||Πx||2 − 1

∣∣∣∣ ≤ ε.

2○ Concentration: ||Πx||2 =
∑

i=1m < Πi, x >2, where Z1 =< Πi, x > and EZ2
i = 1.

3○ Union bound:

P

(
max
x∈N 1

4

∣∣∣∣∣ 1m
m∑
i=1

Z2
i (x)− 1

∣∣∣∣∣ > ε

2

)
≤
∣∣∣N 1

4

∣∣∣ · 2 · exp(− ε2

128σ2

)
.


