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Lecture 5: SubGaussian Random Variables and Concentration Inequalities
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5.1 Basic Inequalities

We present several fundamental inequalities used in probability theory.

(1) Markov’s Inequality: For a non-negative random variable X, the probability that X is at
least ¢ is bounded by the expected value of X over ¢:

P(XZt)SE[tX], for X > 0.

Proof. The expected value of X is:

This can be split as:
t ]
/ x-p(x)dm—l—/ x - p(z)de.
0 t

Since x > t for the second integral, we have:
E[X] 2/ t-plx)de =t -P(X >1t).
t
O

(2 Chebyshev’s Inequality: For a random variable X with mean p and variance Var(X), the
probability that the deviation of X from s is at least ¢ is bounded by the variance over t:

Var(X)

P(X —pl 2 ) < 5

Proof. Apply Markov’s inequality to the non-negative random variable | X — p|?, we have
1
LHS = P(|X —puf*>1t%) < t—QEHX — ul?] = RHS.

O]

(3) Chernoff Bound: The Chernoff bound combines the moment generating function with Markov’s
inequality to provide an exponential bound on the tail probabilities.
P(X —p>1t) = Plexp(A(X — p)) = exp(At)), VA>0.
< exp(=At) - Efexp(AM(X — )], A€ [<b,].
Let ¢(A) = E[exp(A(X — p))], this leads to:
P(X —p>1t) <exp(=At) - ¢(N), VAe[0,b].
— P(X —p>t)< inf exp(=At)-o(N).
A€(0,0]

)
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5.2 Subgaussian

5.2.1 Definition
A random variable X, subject to Elexp(A(X — pu))] < exp(#) for all A € R.

(1) Subgaussian with Chernoff bound.

P(X —p>t) < inf exp(—At)P(A) < )i\n% exp(%oj)\2 — At).
>

A>0

where A = %, then we have

t?
PX —p>t)< —— ).
( M_)_GXP( 202)

If X is subgaussian, then —X is also subgaussian.
2
mfx—PMZw:Pa>ﬂs—wSmeé2)
o

Therefore,

t2
<HW—M2w§2em<—J.
20

(2 Any bounded random variable is subgaussian.

Proof. Let X € [a,b] almost surely. Then

Elexp(A(X — p))] = Ex exp(A\(X — E[X"])),
< ExEYy exp(A\(X — X)),
=ExE [Ee exp(A\(X — X') - e)} .

e is a Rademacher random variable, meaning € = {1 with probability %, —1 with probability %},
thus we have

B, exp(\- (X — X') - ) = %exp()\ J(X = X)) + %exp()\ (X = X)),

1
< exp <2>\2 (X - X’)2> .
Thus we have

Elexp(A(X — 1))] < ExEly exp <;)\2(X - X')2> ,

< exp (;V(b - a)2> .

Hence X is subgaussian with ¢ = (b — a)?. O

(3) Additivity of Subgaussian.

Let X; be subgaussian, i.e. X; ~ SubG(o?), then Y X; is also subgaussian given X;’s are
independent, and Y X; ~ SubG(> o?).

We can further derive the Hoeffding bound:

P (Y (X~ m) = t) <exp (22?‘9 .
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@ If we know P(|X| > t), then we can have:

00 00 2/k
E[|X|*] = / P(X|F > t)dt < / 2. exp (-’;2> dt.
0 0 o

by using the bound for P(|X| > ?):

t2
P(|X|>t) <2- —— .
(1% > ) <2 exp (55 )

We can get:

5.2.2 f(X)—-Ef(X)
Let f(X) = f(X1,X9,...,Xy), if f has a bounded difference, f(X) — Ef(X) will be subgaussian.
(D Doob construction. Construct a martingale with f(X) and X.,.
Y = E[f(X)|Fk], Fr=o0(X1,..., Xp).

Definition of martingale:
E[Yit1|Fr] = Ys.

Which can be derived as follows:

E[Yi.1|Fi] = EE[f(X)|Fega] | F] " EPY E[f(X)|Fi] = Vi

Let
Dy =Yy — Yi-1,
then
E[Dg11|Fk] = E[Yiy1 — Yi|Fi] =0,
finally,

Y= Yo = S(X) ~ELf(X)] = 3 D

(2 Azuma-Hoeffding. For Dy, € [ak, bi], Y_p_; Dy is subG.

Proof.

n

Elexp(A Y -Di) = E[E[exp(A- >  Dy) - exp(ADn| Fro1)]]-
k=1 k=1

and we have
n—1

Elexp(A Y -Di) =Elexp(A- Y Dg)] - Elexp(ADy)| F-1].
k=1 k=1
since D|Fi—1 bdd is subG, we have
A2(by, — ay)?
Elexp(ADg)|Fr—1] < exp((kgk)

then

n n—1 n
A2 b — 2 AQ
Elexp(A Y -Dy) < Elexp(A- Y Di)] 'exp((k’Sak)
= k= k=1

thus Y Dy, is subG with o2 = %Zzzl(bk —ag)?.
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(3) Bounded Difference Inequality.

/

Ve, xp
if
[F(x) = )] < L

Here

X = " ,
Tj, 1 xk#wlw

Define Y Dy = f(x) — Ef(x), we have Y Dy is subG.

/ .
' {xk, if x = a7,

Proof. Using Azuma-Hoeffding inequality to show Dy is bounded:
Let
Dy =Yy — Yi1,

A = ing[f(X) | Ximk—1, X = 2] — Y31,
By =supE[f(x) | Xip—1, Xk = 2] — V1.
X

Then we have
A < Dy, < By,

By — A <supE[f(X)1ok—1, %, Xit1on)] — E[f (X)1mk—1, Y Xkt 1on)] < sup Ly, = Ly,

z,y T,y
So that Dy, is bdd.
By Azuma-Hoeffding inequality, we have ) Dy is subG, which completes the proof. O

(@ Rademacher complexity: the complexity of a vector collection A:

cf(x1)]| [ef'(X1)

: , : ,... 0 ,wheref € F = all the models.
f(@n)] f1(Xn)
Assume that ¢ is a Rademacher vector, we have

E.Z(A) =E sup(a,¢).
acA

Define ¢ — &* as the k-th element of €% # ¢, and f(¢) as Z(A), we have f(e) — f(¢'*) has
bounded difference.

Proof. Since

f(e™) = supla,e™) > (a,e™"*),Va € A.
acA

Which can be transferred to:
<(I,€> - f(glk) < <CL,€ - 5/k>)va €A

And we have
sup(a,¢) — £(£*) < supla, e — ™).

a a

So, finally, we have
fle) — f(e*) <sup 2-|ay| =: L.

which completes the proof. O
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(5) Maximal Inequality: (worst case won’t happen w.h.p.)

%Zzi%ooéw.h.p ’;Zzz

Given X;.y not i.i.d. but E [max; X;] is sub-G(62)

<t.

AN
|
<)
o
A~
=
T (D 1
"

o]
~
VA
B

3]

"
ks
N
—_
~

1 &2
= flogN—i—?S, Vs >0
s

= LHS < inf RHS =6 -/2log N.

(2) P(maxX;>t)=P (U(Xi > t)>

)

3) E {max |XZ@ =E [m% max { X, —Xi}] <0 -+/2log(2N).
? 1€

t2
. < . - | .
(4) P(m?X|Xz’ >t) < 2N -exp < 252)

(6) HW: Proof Thm 1.9. of Chapter 1.

E [max @X] < 46Vd.
[SISEP)
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