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5.1 Basic Inequalities

We present several fundamental inequalities used in probability theory.

1○ Markov’s Inequality: For a non-negative random variable X, the probability that X is at
least t is bounded by the expected value of X over t:

P (X ≥ t) ≤ E[X]

t
, for X ≥ 0.

Proof. The expected value of X is:

E[X] =

∫ ∞

0
x · p(x) dx.

This can be split as: ∫ t

0
x · p(x) dx+

∫ ∞

t
x · p(x) dx.

Since x ≥ t for the second integral, we have:

E[X] ≥
∫ ∞

t
t · p(x) dx = t · P (X ≥ t).

2○ Chebyshev’s Inequality: For a random variable X with mean µ and variance Var(X), the
probability that the deviation of X from µ is at least t is bounded by the variance over t2:

P (|X − µ| ≥ t) ≤ Var(X)

t2
.

Proof. Apply Markov’s inequality to the non-negative random variable |X − µ|2, we have

LHS = P (|X − µ|2 ≥ t2) ≤ 1

t2
E[|X − µ|2] = RHS.

3○ Chernoff Bound: The Chernoff bound combines the moment generating function with Markov’s
inequality to provide an exponential bound on the tail probabilities.

P (X − µ ≥ t) = P (exp(λ(X − µ)) ≥ exp(λt)), ∀λ > 0.

≤ exp(−λt) · E[exp(λ(X − µ))], λ ∈ [−b, b].

Let ϕ(λ) ≡ E[exp(λ(X − µ))], this leads to:

P (X − µ ≥ t) ≤ exp(−λt) · ϕ(λ), ∀λ ∈ [0, b].

=⇒ P (X − µ ≥ t) ≤ inf
λ∈[0,b]

exp(−λt) · ϕ(λ).
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5.2 Subgaussian

5.2.1 Definition

A random variable X, subject to E[exp(λ(X − µ))] ≤ exp(λ
2σ2

2 ) for all λ ∈ R.

1○ Subgaussian with Chernoff bound.

P (X − µ ≥ t) ≤ inf
λ>0

exp(−λt)Φ(λ) ≤ inf
λ>0

exp(
1

2
σ2λ2 − λt).

where λ = t
σ2 , then we have

P (X − µ ≥ t) ≤ exp

(
− t2

2σ2

)
.

If X is subgaussian, then −X is also subgaussian.

P (−X − (−µ) ≥ t) = P(X − µ ≤ −t) ≤ exp

(
− t2

2σ2

)
.

Therefore,

P (|X − µ| ≥ t) ≤ 2 · exp
(
− t2

2σ2

)
.

2○ Any bounded random variable is subgaussian.

Proof. Let X ∈ [a, b] almost surely. Then

E[exp(λ(X − µ))] = EX exp(λ(X − E[X ′])),

≤ EXE′
X exp(λ(X −X ′)),

= EXE′
X

[
Eϵ exp(λ(X −X ′) · ϵ)

]
.

ϵ is a Rademacher random variable, meaning ϵ = {1 with probability 1
2 ,−1 with probability 1

2},
thus we have

Eϵ exp(λ · (X −X ′) · ϵ) = 1

2
exp(λ · (X −X ′)) +

1

2
exp(λ · (X ′ −X)),

≤ exp

(
1

2
λ2 · (X −X ′)2

)
.

Thus we have

E[exp(λ(X − µ))] ≤ EXE′
X exp

(
1

2
λ2(X −X ′)2

)
,

≤ exp

(
1

2
λ2(b− a)2

)
.

Hence X is subgaussian with σ2 = (b− a)2.

3○ Additivity of Subgaussian.

Let Xi be subgaussian, i.e. Xi ∼ SubG(σ2
i ), then

∑
Xi is also subgaussian given Xi’s are

independent, and
∑

Xi ∼ SubG(
∑

σ2
i ).

We can further derive the Hoeffding bound:

P
(∑

(Xi − µ) ≥ t
)
≤ exp

(
− t2

2
∑

σ2
i

)
.
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4○ If we know P (|X| > t), then we can have:

E[|X|k] =
∫ ∞

0
P (|X|k > t) dt ≤

∫ ∞

0
2 · exp

(
− t2/k

2σ2

)
dt.

by using the bound for P (|X| > t):

P (|X| > t) ≤ 2 · exp
(
− t2

2σ2

)
.

We can get:

E[|X|k] ≈
(
2σ2
) k

2 · k · Γ
(
k

2

)
= O

(
σk
)
.

5.2.2 f(X)− Ef(X)

Let f(X) ≡ f(X1, X2, . . . , Xn), if f has a bounded difference, f(X)− Ef(X) will be subgaussian.

1○ Doob construction. Construct a martingale with f(X) and X1:n.

Yk = E[f(X)|Fk], Fk = σ(X1, . . . , Xk).

Definition of martingale:
E[Yk+1|Fk] = Yk.

Which can be derived as follows:

E[Yk+1|Fk] = E[E[f(X)|Fk+1]|Fk]
Tower property

= E[f(X)|Fk] ≡ Yk.

Let
Dk = Yk − Yk−1,

then
E[Dk+1|Fk] = E[Yk+1 − Yk|Fk] = 0,

finally,

Yn − Y0 = f(X)− E[f(X)] =

n∑
i=1

Dk.

2○ Azuma-Hoeffding. For Dk ∈ [ak, bk],
∑n

k=1Dk is subG.

Proof.

E[exp(λ
n∑

k=1

·Dk) = E[E[exp(λ ·
n∑

k=1

Dk) · exp(λDn|Fn−1)]].

and we have

E[exp(λ
n∑

k=1

·Dk) = E[exp(λ ·
n−1∑
k=1

DK)] · E[exp(λDn)|Fn−1].

since Dk|Fk−1 bdd is subG, we have

E[exp(λDk)|Fk−1] ≤ exp(
λ2(bk − ak)

2

8
).

then

E[exp(λ
n∑

k=1

·Dk) ≤ E[exp(λ ·
n−1∑
k=1

DK)] · exp(λ
2(bk − ak)

2

8
) ≤ exp(

λ2

8

n∑
k=1

(bk − ak)
2).

thus
∑

Dk is subG with σ2 = 1
4

∑n
k=1(bk − ak)

2.
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3○ Bounded Difference Inequality.

∀x, x′
k

if

|f(x)− f(x
′
k)| ≤ Lk.

Here

x
′
k =

{
x

′
k, if xk = x′k,

xj , if xk ̸= x′k,

Define
∑

Dk = f(x)− Ef(x), we have
∑

Dk is subG.

Proof. Using Azuma-Hoeffding inequality to show Dk is bounded:

Let

Dk = Yk − Yk−1,

Ak = inf
x
E[f(x) | X1∼k−1,Xk = x]− Yk−1,

Bk = sup
x

E[f(x) | X1∼k−1,Xk = x]− Yk−1.

Then we have

Ak ≤ Dk ≤ Bk,

Bk −Ak ≤ sup
x,y

E[f(X)1∼k−1, x,Xk+1∼n)]− E[f(X)1∼k−1, y,Xk+1∼n)] ≤ sup
x,y

Lk = Lk.

So that Dk is bdd.

By Azuma-Hoeffding inequality, we have
∑

Dk is subG, which completes the proof.

4○ Rademacher complexity: the complexity of a vector collection A:
cf(x1)...
f(xn)]

 ,

cf
′(X1)
...

f ′(Xn)

 , . . .

 ,wheref ∈ F ⇒ all the models.

Assume that ε is a Rademacher vector, we have

EεZ(A) = E sup
a∈A

⟨a, ε⟩.

Define ε → ε
′k as the k-th element of ε

′k ̸= εk and f(ε) as Z(A), we have f(ε) − f(ε
′k) has

bounded difference.

Proof. Since

f(ε
′k) = sup

a∈A
⟨a, ε′k⟩ ≥ ⟨a, ε′k⟩, ∀a ∈ A.

Which can be transferred to:

⟨a, ε⟩ − f(ε
′k) ≤ ⟨a, ε− ε

′k⟩, ∀a ∈ A.

And we have

sup
a
⟨a, ε⟩ − f(ε

′k) ≤ sup
a
⟨a, ε− ε

′k⟩.

So, finally, we have

f(ε)− f(ε
′k) ≤ sup

a
2 · |ak| =: Lk.

which completes the proof.
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5○ Maximal Inequality: (worst case won’t happen w.h.p.)

1

n

∑
zi → ∞ ⇒ w.h.p

∣∣∣∣ 1n∑ zi

∣∣∣∣ ≤ t.

Given Xi∼N not i.i.d. but E [maxiXi] is sub-G(δ2)

(1) E[max
i

Xi] =
1

s
E
[
log

(
exp

(
s ·max

i
Xi

))]
, ∀s > 0

≤ 1

s
log

(
E
[
exp

(
s ·max

i
Xi

)])
=

1

s
log

(
E
[
max

i
exp (s ·Xi)

])
≤ 1

s
log

(
E

[∑
i

exp (s ·Xi)

])

=
1

s
log

(∑
i

exp

(
δ2s2

2

))

=
1

s
logN +

δ2

2
S, ∀s > 0

⇒ LHS ≤ inf
s>0

RHS = δ ·
√
2 logN.

(2) P(max
i

Xi > t) = P

(⋃
i

(Xi > t)

)

≤
∑
i

P(Xi > t) = N · exp
(
− t2

2δ2

)
.

⇒ N · exp
(
− t2

2δ2

)
≤ ε ⇒ t = O

(
δ ·
√

log
N

ε

)
.

(3) E
[
max

i
|Xi|

]
= E

[
max
i∈[N ]

max {Xi,−Xi}
]
≤ δ ·

√
2 log(2N).

(4) P(max
i

|Xi| > t) ≤ 2N · exp
(
− t2

2δ2

)
.

6○ HW: Proof Thm 1.9. of Chapter 1.

E
[
max
Θ∈B2

ΘX

]
≤ 4δ

√
d.


