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3.1 Regularization

Regularization is a technique applied in statistical models to encode preference for simpler solutions
and to prevent overfitting by adding a penalty term to the loss function used to fit the model.

3.1.1 Ridge Regression

Ridge Regression, specifically, is a type of linear regression that includes a regularization term. The
regularization term added is the L2 norm of the coefficients, multiplied by a tuning parameter λ.

L =
1

2n
(Y −Xw)⊤(Y −Xw) +

λ

2
∥w∥2 (3.1)

∂L

∂w
= − 1

n
X⊤(Y −Xw) + λw = 0 (3.2)

the ridge regression estimator is

ŵ = (X⊤X + nλI)−1X⊤Y (3.3)

3.1.1.1 Numeric stability

Observing the equation of ŵ, we can find that ridge regression addresses numerical stability issues
that arise in ordinary least squares (OLS) regression. The condition number is smaller than before.

K
((

XTX + nλI
)−1

XT
)

(3.4)

3.1.1.2 MSE Reduction

Another benefit of ridge regression is the Mean Squared Error (MSE) can be lower than in OLS due
to the trade-off between bias and variance. First, we explain what MSE is. In a specific setting of
linear regression, for an estimated ŵ, we can calculate its’ MSE easily. In this equation, we use the
trace trick.

MSE(ŵ) = E(ŵ − w⋆)⊤(ŵ − w⋆)

= Tr(E(ŵ − w⋆)(ŵ − w⋆)⊤)

= Tr(M(ŵ))

(3.5)

In this equation, M(ŵ) is a matrix of ŵ; it is a kind of function of estimated ŵ. We only need to show
that the induced matrix M(ŵλ) is smaller than M(ŵ), which means:

M(ŵλ) ≤ M(ŵ) (3.6)

The ≤ is actually the lower order.

M(ŵ) = (X⊤X)−1X⊤Y (3.7)
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We can also induce that :

M(ŵλ) ≤ M(ŵ) =⇒ MSE(ŵλ) ≤ MSE(ŵ) (3.8)

The proof of this is about the PSD matrix:
Firstly, A ≤ B means A − B is PSD, which is the definition of lower order. Secondly, for a PSD

Matrix, all the diagonals ≥ 0
M(ŵa)−M(ŵ) (3.9)

o.w. eTi (∼)ei = i-th diagonals < 0. (3.10)

This conflicts with the definition of the PSD matrix.
Before we show the complete proof, we can first prove a small proposition:

C ·A− b · bT ≥ 0 ⇔ bTA−1b ≤ C (3.11)

In which C is a constant, A is an inversible square matrix, and b is a column vector.

To prove it:
Because A is inversible, so to the left hand-side:

CA− 1
2A(A)−

1
2 −A− 1

2 bb⊤A− 1
2 ≥ 0

CI −A− 1
2 bb⊤A− 1

2 ≥ 0
(3.12)

x⊤[(CI −A− 1
2 bb⊤A− 1

2 ]x ≥ 0, ∀||x|| = 1 (3.13)

CxTx ≥ xTA− 1
2 bbTA− 1

2x (3.14)

∥b−1A
1
2 ∥ ≤

√
c, o.w. ∃X, xT ∼ X > c (3.15)

For a given matrix X of size m× n, SVD decomposes X into:

A = UΣV ⊤ (3.16)

∥UΣV ⊤∥ = σmax ⇒ V Σ2V ⊤, X = V1 (3.17)

A = UΣU⊤

A− 1
2 = UΣ− 1

2U⊤
(3.18)

3.1.1.3 Bias Vector of Ridge Estimator

The bias of an estimator is the difference between its expected value and the true parameter value.
For the ridge estimator, the bias can be calculated as:

M(ŵλ) = Var (ŵλ) + E (ŵλ − ŵ⋆) · E (ŵλ − ŵ⋆)⊤

E
(
X⊤X + nλI

)−1
X⊤Y (= Xw⋆ + E)

= (X⊤X + nλI)−1X⊤Xw⋆

= (X⊤X + nλI)−1
(
X⊤X + nλI − nλI

)
w⋆

= w⋆ − nλ
(
X⊤X + nλI

)−1
w⋆

(3.19)

So,

Bias = nλ
(
X⊤X + nλI

)−1
w⋆ (3.20)

Notice that (X⊤X+λI)−1X⊤X is not the identity matrix, resulting in a non-zero bias when λ > 0.
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3.1.1.4 Variance of Ridge Estimator

First we define a matrix Bλ as:
Bλ = (X⊤X + nλI)−1X⊤X (3.21)

Then

ŵλ = Bλ

(
X⊤X

)−1
X⊤Y = Bλŵ (3.22)

Var (ŵλ) = BλVar(ŵ)B
⊤
λ

= σ2Bλ(X
⊤X)−1B⊤

λ

= σ2(X⊤X + naI)−1X⊤X(X⊤X + nλI)−1

(3.23)

Next we need to compare the Var(ŵ) and Var(ŵa)
A small trick to simplify the decompose to matrix: rewrite the X⊤X−1 as UΣ−1U⊤

Var(ŵ)−Var(ŵa)

= σ2UΣ−1U⊤ − σ2U [(Σ + nλI)Σ−1(Σ + nλI)]U⊤

= σ2U [Σ + nλI)−1(Σ + nλI)Σ−1(Σ + nλI(Σ + nλI)−1]UT

= σ2U [Σ + nλI)−1(2nλI + n2λ2Σ−1)(Σ + nλI)−1]UT

= σ2(X⊤X + nλI)−1(2nλI + n2λ2(X⊤X)−1)((X⊤X + nλI)−1)]

(3.24)

To show the MSE of the ridge estimator ŵλ is better, we need to return to the X form and insert
the bias into the difference. So the Var(ŵ)− V ar(ŵa) can be write as

σ2(X⊤X + nλI)−1(2nλI + n2λ2(X⊤X)−1)((X⊤X + nλI)−1)]− biasλbias
⊤
λ (3.25)

in which,
biasλbias

⊤
λ = n2λ2(XTX + nλI)−1w∗w∗⊤(X⊤X + nλI)−1 (3.26)

Var(ŵ)−Var(ŵa) = σ2 · 2nλI + n2λ2σ2(X⊤X)−1 − n2a2w∗w∗⊤ (3.27)

It is sufficient to show
2σ2I − nλw∗w∗⊤ ≥ 0 (3.28)

We can finally get the following:

w∗⊤w∗ ≤ 2t2

ηλ
⇐⇒ λ ≤ 1

n
2σ2 · 1

||w⋆||2
(3.29)

Overall, the MSE, which decomposes into the sum of the variance and the square of the bias, may
decrease if the increase in bias is offset by a larger decrease in variance.

3.2 Logistic Regression

3.2.1 Differentiate Terms

3.2.1.1 Softmax v.s. Softmax for X1−n

The softmaximum of X⃗ is defined by:

ln

n∑
i=1

exi ≈ ln exmax = xmax (3.30)

The softmax function σ takes as input a vector X⃗ of n real numbers and normalizes it into a probability
distribution consisting of n probabilities proportional to the exponentials of the input numbers. It
approximates a one-hot vector y⃗ = (0, 0, . . . , 1, . . . , 0, 0), is defined by the formula:

σ(X⃗) =

{
exp(xi)∑n
j=1 exp(xj)

}n

i=1

= exp(X⃗)/⟨exp(X⃗), In⟩

(3.31)
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3.2.2 Cross Entropy

The cross-entropy H(p, q) represents the expected value of the information content Ip(x) under the
distribution q. Here, p and q are two probability distributions, with q representing the ground truth.
The formula is defined as follows:

H(p, q) = Eq [Ip(x)]

= Eq [− log p(x)]

= ⟨y,− log σ(x)⟩
(3.32)

Cross entropy and negative log-likelihood are equivalent, which can be represented as:

log

n∏
i=1

[
σ(X⃗)

]yi
i

(3.33)

In PyTorch, cross-entropy loss implicitly combines cross-entropy computation with softmax. The
input provided is the unnormalized logits.

3.2.3 Logits

The logit function is defined as log
(

p
1−p

)
. In the special case of two classes, p can be calculated as

follows:

p = σ (X1) =
exp (X1)

1 + exp (X1)
(3.34)

where σ is the sigmoid function. Then

log
p

1− p
= log exp (X1) = X1 (3.35)

3.2.4 Other Form of Logistic Regression

In some cases, the logistic regression is represented as follows:

exp
(
W⊤

i X
)

1 +
∑n−1

j=1 exp
(
W⊤

j X
) (3.36)

Since Wn = 0, the cross-entropy form is overparameterized, and the Hessian matrix is singular.

3.2.5 Numerical Issue

The softmax function may exhibit overflow and underflow numerical issues. For instance, the expres-
sion

∑
exp(xi) can lead to overflow when x1 = 1000, x2 = 2000, and x3 = 3000. Additionally, the

modified expression exp(xi−xmax)∑
exp(xj−xmax)

may lead to underflow. Log softmax is advantageous over softmax

for improved numerical performance and gradient optimization.

3.2.6 Other Form of Cross-Entropy Loss

In binary classification, the ground truth can be y ∈ {0, 1} or y ∈ {−1, 1}. The cross-entropy loss is
defined as follows:

e (z) = log (1 + exp (−yz)) (3.37)

Since

σ (z) =
exp (z)

1 + exp (z)
(3.38)

where σ is the sigmoid function. For instance, when P (Y = 1|z), we can get σ (z) = 1
1+exp(−z) . When

P (Y = −1|z), we can get σ (z) = 1
1+exp(z) . Since

P (Y = y|z) = σ (yz) (3.39)

e is the negative log-likelihood, which can be obtained:

e (z) = − lnσ (yz) = ln (1 + exp (−yz)) (3.40)
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3.2.7 Convexity

In this section, we will explain why logistic regression is a convex function. According to the conclusion
from the second lecture about logistic regression:

∂l

∂a
= −y + softmax (a) , a = WX (3.41)

Then represent the Hessian matrix H = ∂2l
∂2a

column by column:

Hi =
∂gi
∂a

=
∂⟨ei, ∂l

∂a⟩
∂a

(3.42)

Then
∂gi = ∂ exp (⟨ei, logsoftmax (a)⟩)

= ⟨ei, softmax (a)⟩ [ei − softmax (a)]⊤ ∂a
(3.43)

where ⟨ei, softmax (a)⟩ is denoted as σi. Therefore

Hi =
∂gi
∂a

= σi (ei − σ) (3.44)

The Hessian matrix can be represented as follows:

H = diag (σ)− σσ⊤ (3.45)

For ∀x and x is a nonzero vector. We can get

x⊤Hx =
∑

σix
2
i − (σixi)

2 >= 0 (3.46)

where
∑

σi = 1. Therefore, the Hessian matrix is a positive semidefinite matrix, and the logistic
regression is a convex problem.


