
COMP 7070 Advanced Topics in AI and ML 16/04/2024

Lecture 13: Generative Models

Instructor: Yifan Chen Scribes: Xiong PENG Proof reader: N/A

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publi-

cations. They may be distributed outside this class only with the permission of the Instructor.

13.1 DDIM

13.1.1 Background

Given samples from a data distribution q(x0), we are interested in learning a model distribution
pθ(x0) that approximates q(x0) and is easy to sample from. Denoising diffusion probabilistic models
(DDPMs) are latent variable models of the form:

pθ(x0) =

∫
pθ(x0:T) dx1:T , where pθ(x0:T) := pθ(xT)

T∏
t=1

p
(t)
θ (xt−1 | xt), (13.1)

where x1, . . . , xT are latent variables in the same sample space as x0 (denoted as X). The parameters
θ are learned to fit the data distribution q(x0) by maximizing a variational lower bound:

max
θ

Eq(x0)[log pθ(x0)] ≤ max
θ

Eq(x0:T) [log pθ(x0:T)− log q(x1:T | x0)] , (13.2)

where q(x1:T | x0) is some inference distribution over the latent variables. Unlike typical latent
variable models (such as the variational autoencoder), DDPMs are learned with a fixed (rather than
trainable) inference procedure q(x1:T | x0), and latent variables are relatively high dimensional. For
example, DDPM considered the following Markov chain with Gaussian transitions parameterized by
a decreasing sequence α1:T ∈ (0, 1]T :

q(x1:T | x0) :=
T∏
t=1

q(xt | xt−1), where q(xt | xt−1) := N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
, (13.3)

where the covariance matrix is ensured to have positive terms on its diagonal. This is called the forward
process due to the autoregressive nature of the sampling procedure (from x0 to xT). We call the latent
variable model pθ(x0:T), which is a Markov chain that samples from xT to x0, the generative process,
since it approximates the intractable reverse process q(x1:T | x0). Intuitively, the forward process
progressively adds noise to the observation x0, whereas the generative process progressively denoises
a noisy observation.

A special property of the forward process is that:

q(xt | x0) :=
∫
q(xt | xt−1)q(xt−1 | x0) dxt−1 = N (xt;

√
αtx0, (1− αt)I) . (13.4)

When we set αT sufficiently close to 0, q(xT | x0) converges to a standard Gaussian for all x0, so
it is natural to set pθ(xT) := N (0, I). If all the conditionals are modeled as Gaussians with trainable
mean functions and fixed variances, the objective in Eq. (13.2) can be simplified to:

Lγ(ϵθ) :=
T∑
t=1

γtEx0∼q(x0),ϵt∼N (0,I)

[∥∥∥ϵ(t)θ

(√
αtx0 +

√
1− αtϵt

)
− ϵt

∥∥∥2
2

]
, (13.5)

where ϵ
(t)
θ := ϵ

(t)
θ (xt) is a set of T functions, each ϵ

(t)
θ : X → X (indexed by t) is a function with

trainable parameters θ(t), and γ := [γ1, . . . , γT] is a vector of positive coefficients in the objective that
depends on α1:T .

13-1

13-2 Lecture 13: Generative Models

13.1.2 Variational Inference for Non-Markovian Forward Processes

Because the generative model approximates the reverse of the inference process, we need to rethink the
inference process in order to reduce the number of iterations required by the generative model. Our
key observation is that the DDPM objective in the form of Lγ only depends on the marginals q(xt | x0),
but not directly on the joint q(x1:T | x0). Since there are many inference distributions (joints) with
the same marginals, we explore non-Markovian alternative inference processes, which leads to new
generative processes. These non-Markovian inference processes lead to the same surrogate objective
function as DDPMs, as we will show below.

Non-Markovian Forward Processes

Let us consider a family Q of inference distributions, indexed by a real vector σ ∈ RT
≥0:

qσ(x1:T | x0) := qσ(xT | x0)
T∏
t=2

qσ(xt−1 | xt, x0), (13.6)

where qσ(xT | x0) = N (
√
αTx0, (1− αT)I) and for all t > 1,

qσ(xt−1 | xt, x0) = N
(
√
αt−1x0 +

√
1− αt−1 − σ2t

xt −
√
αtx0√

1− αt
, σ2t I

)
. (13.7)

The mean function is chosen in order to ensure that qσ(xt | x0) = N (
√
αtx0, (1 − αt)I) for all t, so

that it defines a joint inference distribution that matches the “marginals” as desired. The forward
process can be derived from Bayes’ rule:

qσ(xt−1 | xt, x0) =
qσ(xt | xt−1, x0)qσ(xt−1 | x0)

qσ(xt | x0)
(13.8)

which is also Gaussian (although we do not use this fact for the remainder of this paper). Unlike
the diffusion process in Eq. (13.3), the forward process here is no longer Markovian, since each xt
could depend on both xt−1 and x0. The magnitude of σ controls the degree of stochasticity of the
forward process; when σ → 0, we reach an extreme case where as long as we observe x0 and xt for
some t, then xt−1 becomes known and fixed.

Generative Process and Unified Variational Inference Objective

Next, we define a trainable generative process pθ(x0:T) where each p
(t)
θ (xt−1 | xt) leverages knowledge

of qσ(xt−1 | xt, x0). Intuitively, given a noisy observation xt, we first predict the corresponding x0,
and then use it to obtain a sample xt−1 through the reverse conditional distribution qσ(xt−1 | xt, x0),
which we have defined.

For some x0 ∼ q(x0) and ϵt ∼ N (0, I), xt can be obtained using Eq. (13.4). The model ϵ
(t)
θ (xt)

then attempts to predict ϵt from xt, without knowledge of x0. By rewriting Eq. (13.4), one can then
predict the denoised observation, which is a prediction of x0 given xt:

f
(t)
θ (xt) := (xt −

√
1− αt · ϵ(t)θ (xt))/

√
αt (13.9)

We can then define the generative process with a fixed prior pθ(xT) = N (0, I) and

p
(t)
θ (xt−1 | xt) =

{
N (f

(1)
θ (xt), σ

2
t I) if t = 1

qσ(xt−1 | xt, f (t)θ (xt)) otherwise,
(13.10)

where qσ(xt−1 | xt, f (t)θ (xt)) is defined as in Eq. (13.7) with x0 replaced by f
(t)
θ (xt). We add some

Gaussian noise (with covariance σ2t I) for the case of t = 1 to ensure that the generative process is
supported everywhere.

Lecture 13: Generative Models 13-3

We optimize θ via the following variational inference objective (which is functional over ϵ0):

Jσ(ϵ0) := Ex0∼q(x0)[log qσ(x1:T | x0)− log pθ(x0:T)] (13.11)

= Ex0∼q(x0)

[
log qσ(xT | x0) +

T∑
t=2

log qσ(xt−1 | xt, x0)−
T∑
t=1

log p
(t)
θ (xt−1 | xt)− log pθ(xT)

]
, (13.12)

where we factorize qσ(x1:T | x0) according to Eq. (13.6) and pθ(x0:T) according to Eq. (13.1).

13.1.3 Denoising Diffusion Implicit Models

From pθ(x1:T) in Eq. (13.10), one can generate a sample xt−1 from a sample xt via:

xt−1 =
√
αt−1

(
xt −

√
1− αt · ϵ(t)θ (xt)√

αt

)
+
√

1− αt−1 − σ2t · ϵ
(t)
θ (xt) + σtϵt (13.13)

where ϵt ∼ N (0, I) is standard Gaussian noise independent of xt, and we define α0 = 1. Different
choices of σ or values result in different generative processes, all while using the same model ϵ0, so
re-training the model is unnecessary. When σt =

√
(1− αt−1)/(1− αt)

√
1− αt/αt−1 for all t, the

forward process becomes Markovian, and the generative process becomes a DDPM.
We note another special case when σt = 0 for all t; the forward process becomes deterministic

given xt−1 and x0, except for t = 1; in the generative process, the coefficient before the random noise
ϵt becomes zero. The resulting model becomes an implicit probabilistic model, where samples are
generated from latent variables with a fixed procedure (from xT to x0). We name this the denoising
diffusion implicit model (DDIM) because it is an implicit probabilistic model trained with the DDPM
objective (despite the fact that the forward process is no longer a diffusion).

13.2 FLOW MATCHING

13.2.1 Preliminaries: Continuous Normalizing Flows

Let Rd denote the data space with data points x = (x1, . . . , xd) ∈ Rd. Two important objects we use
in this paper are:

• the probability density path p : [0, 1]×Rd → R>0, which is a time-dependent probability density
function, i.e.,

∫
pt(x) dx = 1, and

• a time-dependent vector field v : [0, 1]× Rd → Rd.

A vector field vt can be used to construct a time-dependent diffeomorphic map, called a flow, ϕ :
[0, 1]× Rd → Rd, defined via the ordinary differential equation (ODE):

d

dt
ϕt(x) = vt(ϕt(x)) and ϕ0(x) = x. (13.14)

A Continuous Normalizing Flow (CNF) can be used to reshape a simple prior density p0 (e.g.,
pure noise) to a more complicated one, p1, via the push-forward equation:

pt = [ϕt]∗p0, (13.15)

where the push-forward (or change of variables) operator ∗ is defined by:

[ϕt]∗p0(x) = p0(ϕ
−1
t (x)) det

[
∂ϕ−1

t

∂x

]
. (13.16)

A vector field vt is said to generate a probability density path pt if its flow ϕt satisfies equa-
tion (13.15).

13-4 Lecture 13: Generative Models

13.2.2 Flow Matching

Let x1 denote a random variable distributed according to some unknown data distribution q(x1). We
assume we only have access to data samples from q(x1) but no access to the density function itself.
Furthermore, we let pt be a probability path such that p0 = p is a simple distribution, e.g., the
standard normal distribution p(x) = N (x|0, I), and let p1 be approximately equal in distribution to
q. We will later discuss how to construct such a path. The Flow Matching objective is then designed
to match this target probability path, which will allow us to flow from p0 to p1.

We define the Flow Matching (FM) objective as:

LFM(θ) = Et,pt(x)

[
∥vt(x)− ut(x)∥2

]
, (13.17)

where θ denotes the learnable parameters of the CNF vector field vt, t ∼ U [0, 1] (uniform distribution),
and x ∼ pt(x). Simply put, the FM loss regresses the vector field ut with a neural network vt. Upon
reaching zero loss, the learned CNF model will generate pt(x).

Flow Matching is a simple and attractive objective, but naively on its own, it is intractable to use
in practice since we have no prior knowledge for what an appropriate pt and ut are.

13.2.3 Constructing pt, ut from Conditional Probability Paths and Vector Fields

A simple way to construct a target probability path is via a mixture of simpler probability paths.
Given a particular data sample x1, we denote by pt(x|x1) a conditional probability path such that
it satisfies p0(x|x1) = p(x) at time t = 0, and we design p1(x|x1) at t = 1 to be a distribution
concentrated around x = x1, e.g., p1(x|x1) = N (x|x1, σ2I), a normal distribution with x1 mean and a
sufficiently small standard deviation or σ > 0.

Marginalizing the conditional probability paths over q(x1) gives rise to the marginal probability
path:

pt(x) =

∫
pt(x|x1)q(x1) dx1. (13.18)

Interestingly, we can also define a marginal vector field by ”marginalizing” over the conditional
vector fields in the following sense (we assume pt(x) > 0 for all t and x):

ut(x) =

∫
ut(x|x1)

pt(x|x1)q(x1)
pt(x)

dx1. (13.19)

Theorem 1. Given vector fields ut(x|x1) that generate conditional probability paths pt(x|x1) for
any distribution q(x1), the marginal vector field ut in Eq. (13.19) generates the marginal probability
path pt in Eq. (13.18).

13.2.4 Conditional Flow Matching

Unfortunately, due to the intractable integrals in the definitions of the marginal probability path
and vector field (Eqs (13.18) and (13.19)), it is still intractable to compute ut, and consequently,
intractable to naively compute an unbiased estimator of the original Flow Matching objective. Instead,
we propose a simpler objective, which surprisingly will result in the same optima as the original
objective. Specifically, we consider the Conditional Flow Matching (CFM) objective:

LCFM(θ) = Et,q(x1),pt(x|x1)

[
∥vt(x)− ut(x|x1)∥2

]
, (13.20)

where t ∼ U [0, 1], x1 ∼ q(x1), and now x ∼ pt(x|x1). Unlike the FM objective, the CFM objective
allows us to easily sample unbiased estimates as long as we can efficiently sample from pt(x|x1) and
compute ut(x|x1), both of which can be easily done as they are defined on a per-sample basis.

Our key observation is therefore:

The FM (Eq. (13.17)) and CFM (Eq. (13.20)) objectives have identical gradients
w.r.t. θ.

Lecture 13: Generative Models 13-5

That is, optimizing the CFM objective is equivalent (in expectation) to optimizing the FM objec-
tive. Consequently, this allows us to train a CNF to generate the marginal probability path pt—which
in particular, approximates the unknown data distribution q at t = 1—without ever needing access to
either the marginal probability path or the marginal vector field. We simply need to design suitable
conditional probability paths and vector fields. We formalize this property in the following theorem.

Theorem 2. Assuming that pt(x) > 0 for all x ∈ Rd and t ∈ [0, 1], then, up to a constant
independent of θ, LCFM and LFM are equal. Hence, ∇θLFM(θ) = ∇θLCFM(θ).

13.2.5 Gaussian Conditional Probability Paths and Vector Fields

The CFM objective works with any choice of conditional probability path and vector field ut(x|x1). In
this section, we discuss the construction of pt(x|x1) and ut(x|x1) with a particular focus on conditional
probability paths. Namely, we consider conditional Gaussian paths:

pt(x|x1) = N (x|µt(x1), σt(x1)2I), (13.21)

where µt(x1) is the time-dependent mean of the Gaussian distribution, while σt(x1) is a time-dependent
scalar standard deviation (std). We set µ0(x1) = 0 and design conditional paths such that all condi-
tional probability paths converge to the same standard Gaussian at t = 0, e.g., N (x|0, I). We then set
µ1(x1) = x1 and σ1(x1) = σmin, which ensures that p1(x|x1) is a concentrated Gaussian distribution
centered at x1.

Let ut(x|x1) denote the vector field that generates the conditional probability path:

d

dt
ϕt(x) = ut(ϕt(x)|x1). (13.22)

Plugging equation (13.22) into the CFM loss we obtain:

LCFM(θ) = Et,q(x1),p0(x)

[
∥vt(ψt(x0))−

d

dt
ψt(x0)∥2

]
. (13.23)

Since ψt is a simple (invertible) affine map, we can use equation (13.22) to solve for ut in a closed
form.

13.3 Rectified flow

Given empirical observations of X0 ∼ π0, X1 ∼ π1, the rectified flow induced from (X0, X1) is an
ordinary differentiable model (ODE) on time t ∈ [0, 1],

dZt = v(Zt, t)dt,

which converts Z0 from π0 to a Z1 following π1. The drift force v : Rd → Rd is set to drive the flow
to follow the direction (X1 −X0) of the linear path pointing from X0 to X1 as much as possible, by
solving a simple least squares regression problem:

min
v

∫ 1

0
E
[
∥(X1 −X0)− v(Xt, t)∥2

]
dt, with Xt = tX1 + (1− t)X0, (13.24)

where Xt is the linear interpolation of X0 and X1. Naviely, Xt follows the ODE of dXt = (X1−X0)dt,
which is non-causal (or anticipating) as the update of Xt requires the information of the final point
X1. By fitting the drift v with X1−X0, the rectified flow causalizes the linear interpolation Xt paths,
yielding an ODE flow that can be simulated without seeing the future.

In practice, we parameterize v with a neural network or other nonlinear models and solve Eq. (13.24)
with any off-the-shelf stochastic optimizer, such as stochastic gradient descent, with empirical draws
of (X0, X1). See the rectified flow algorithm.

Algorithm 1 After we get v, we solve the ODE starting from Z0 ∼ π0 to transfer π0 to π1,
backwardly starting from Z1 ∼ π1 to transfer π1 to π0. Specifically, for backward sampling, we simply

13-6 Lecture 13: Generative Models

solve dX̃t = −v(X̃t, t)dt initialized from X0 ∼ π1 and set X̃t = X̃1−t. The forward and backward
sampling are equally favored by the training algorithm because the objective in Eq. (13.24) is time-
symmetric in that it yields the equivalent problem if we exchange X0 and X1 and flip the sign of
v.

Flows Avoid Crossing A key to understanding the method is the non-crossing property of flows:
the different paths following a well-defined ODE dZt = v(Zt, t)dt, whose solution exists and is unique,
cannot cross each other at any time t ∈ [0, 1]. Specifically, there exists no location z ∈ Rd and time
t ∈ [0, 1] such that two paths go across z at time t along different directions, because otherwise the
solution of the ODE would be non-unique. On the other hand, the paths of the interpolation process
Xt may intersect with each other, which makes it non-causal. Hence, the rectified flow rewires the
individual trajectories passing through the interpolation points to avoid crossing while tracing out the
same density map as the linear interpolation paths due to the optimization of Eq. (13.24). We can
view the linear interpolation Xt as building roads (or tunnels) to connect π0 and π1, and the rectified
flow as traffic of particles passing through the roads in a myopic, memoryless, non-crossing way, which
allows them to ignore the global path information of how X0 and X1 are paired and rebuild a more
deterministic pairing of (Z0, Z1).

Rectified Flows Reduce Transport Costs

If Eq. (13.24) is solved exactly, the pair (Z0, Z1) of the rectified flow is guaranteed to be a valid
coupling of π0, π1 (Theorem 3.3), that is, Z1 follows π1 if Z0 ∼ π0. Moreover, (Z0, Z1) guarantees to
yield no larger transport cost than the data pair (X0, X1) simultaneously for all convex cost functions
c (Theorem 3.5). The data pair (X0, X1) can be an arbitrary coupling of π0, π1, typically independent
(i.e., (X0, X1) ∼ π0 × π1) as dictated by the lack of meaningfully paired observations in practical
problems. In comparison, the rectified coupling (Z0, Z1) has a deterministic dependency as it is
constructed from an ODE model. Denote by (Z0, Z1) = Rectify((X0, X1)) the mapping from (X0, X1)
to (Z0, Z1). Hence, Rectify converts an arbitrary coupling into a deterministic coupling with lower
convex transport costs.

Straight Line Flows Yield Fast Simulation

Following Algorithm 1, denote by Z = RectFlow((X0, X1)) the rectified flow induced from (X0, X1).
Applying this operator recursively yields a sequence of rectified flows Zk+1 = RectFlow((Zk

0 , Z
k
1))

with (Z0
0 , Z

0
1) = (X0, X1), where Z

k is the k-th rectified flow, or simply k-rectified flow, induced from
(X0, X1).

This reflow procedure not only decreases transport cost but also has the important effect of
straightening out the rectified flows, that is, making its flow paths more straight. This is highly
attractive computationally as flows with nearly straight paths incur small time-discretization error in
numerical simulation. Indeed, perfectly straight paths can be simulated exactly with a single Euler
step and is effectively a one-step model. This addresses the very bottleneck of high inference cost in
existing continuous-time ODE/SDE models.

13.4 Consistency Model

13.4.1 Background

Consistency models are heavily inspired by the theory of continuous-time diffusion models . Diffusion
models generate data by progressively perturbing data to noise via Gaussian perturbations, then
creating samples from noise via sequential denoising steps. Let pdata(x) denote the data distribution.
Diffusion models start by diffusing pdata(x) with a stochastic differential equation (SDE):

dxt = µ(xt, t) dt+ σ(t) dwt, (13.25)

where t ∈ [0, T], T > 0 is a fixed constant, µ(·, ·) and σ(·) are the drift and diffusion coefficients
respectively, and {wt}t∈[0,T] denotes the standard Brownian motion. We denote the distribution of

Lecture 13: Generative Models 13-7

xt as pt(x) and as a result p0(x) ≡ pdata(x). A remarkable property of this SDE is the existence
of an ordinary differential equation (ODE), dubbed the Probability Flow (PF) ODE, whose solution
trajectories sampled at t are distributed according to pt(x):

dxt =

[
µ(xt, t)−

1

2
σ(t)2∇ log pt(xt)

]
dt. (13.26)

Here ∇ log pt(x) is the score function of pt(x); hence diffusion models are also known as score-based
generative models.

Typically, the SDE in Eq. (13.25) is designed such that pT (x) is close to a tractable Gaussian
distribution π(x). We hereafter adopt the settings where µ(x, t) = 0 and σ(t) =

√
2t. In this case, we

have pt(x) = pdata(x)⊗N (0, t2I), where ⊗ denotes the convolution operator, and π(x) = N (0, T 2I).
For sampling, we first train a score model sϕ(x, t) ≈ ∇ log pt(x) via score matching, then plug it into
Eq. (13.26) to obtain an empirical estimate of the PF ODE, which takes the form of

dxt

dt
= −tsϕ(xt, t). (13.27)

We call Eq. (13.27) the empirical PF ODE. Next, we sample xT ∼ π = N (0, T 2I) to initialize
the empirical PF ODE and solve it backwards in time with any numerical ODE solver such as Euler
and Heun to obtain the solution trajectory {xt}t∈[0,T]. The resulting x0 can then be viewed as an
approximate sample from the data distribution pdata(x). To avoid numerical instability, one typically
stops the solver at t = e, which is a fixed small positive number, and accepts xe as the approximate
sample.

definition: Given a solution trajectory {xt}t∈[ϵ,T] of the PF ODE in Eq. (13.26), we define the
consistency function as f : (xt, t) 7→ xϵ. A consistency function has the property of self-consistency :
its outputs are consistent for arbitrary pairs of (xt, t) that belong to the same PF ODE trajectory,
i.e., f(xt, t) = f(xt′ , t

′) for all t, t′ ∈ [ϵ, T].
The goal of a consistency model, symbolized as fθ, is to estimate this consistency function f from

data by learning to enforce the self-consistency property. Note that a similar definition is used for
neural flows, and the invertibility constraint is not required here.

Parameterization For any consistency function f(·, ·), we have f(xϵ, ϵ) = xϵ, i.e., f(·, ϵ) is an
identity function. We call this constraint the boundary condition. All consistency models have to meet
this boundary condition, as it plays a crucial role in the successful training of consistency models.

The first way is to simply parameterize the consistency model as

fθ(x, t) =

{
x, t = ϵ

Fθ(x, t), t ∈ (ϵ, T]
(13.28)

The second method is to parameterize the consistency model using skip connections, that is,

fθ(x, t) = cskip(t)x+ cout(t)Fθ(x, t), (13.29)

where cskip(t) and cout(t) are differentiable functions such that cskip(ϵ) = 1, and cout(ϵ) = 0. This way,
the consistency model is differentiable at t = ϵ if Fθ(x, t), cskip(t), and cout(t) are all differentiable,
which is critical for training continuous-time consistency models. The parameterization in Eq. (13.29)
bears a strong resemblance to diffusion models, making it easier to borrow powerful diffusion model
architectures for constructing consistency models.

13.4.2 Training Consistency Models via Distillation

We present our first method for training consistency models based on distilling a pre-trained score
model sϕ(x, t). Our discussion revolves around the empirical PF ODE in Eq. (13.27), obtained by
plugging the score model sϕ(x, t) into the PF ODE. Consider discretizing the time horizon [ϵ, T] into
N − 1 sub-intervals, with boundaries t1 = ϵ < t2 < · · · < tN = T . In practice, we determine the
boundaries with the formula

ti = (ϵ1/ρ + i− 1/N − 1(T 1/ρ − ϵ1/ρ))ρ, ρ = 7. (13.30)

13-8 Lecture 13: Generative Models

When N is sufficiently large, we can obtain an accurate estimate of xtn from xtn+1 by running one

discretization step of a numerical ODE solver. This estimate, which we denote as x̂ϕ
tn , is defined by

x̂ϕ
tn := xtn+1 + (tn − tn+1)Φ(xtn+1, tn+1;ϕ), (13.31)

where Φ(·) represents the update function of a one-step ODE solver applied to the empirical PF
ODE. For example, when using the Euler solver, we have Φ(x, t;ϕ) = −tsϕ(x, t), which corresponds
to the following update rule:

Definition 13.1 The consistency distillation loss is defined as

LN
CD(θ, θ

−;ϕ) := E[Extn
d(fθ(xtn+1 , tn+1), fθ−(x̂

ϕ
tn , tn))], (13.32)

where the expectation is taken with respect to x ∼ pdata, n ∼ U [1, N − 1], and xtn+1 ∼ N (x; t2n+1I).
Here, U [1, N − 1] denotes the uniform distribution over {1, 2, . . . , N − 1}, ω(tn) is a positive weighting

function, x̂ϕ
tn is given by Eq. (13.31), θ− denotes a running average of the past values of θ during the

course of optimization, and d(·, ·) is a metric function that satisfies d(x,y) ≥ 0 and d(x,y) = 0 if and
only if x = y.

