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10.1 GANs (Generative Adversarial Networks)

10.1.1 Original form of GAN

Starting from Maximum Likelihood Estimation (MLE) and derive the loss function for training Gen-
erative Adversarial Networks (GAN) as:

1

2
Ex∼P (x|Y=1)[logDφ(x)] +

1

2
Ex∼PGθ

(x)[log(1−Dφ(x))]

The goal of GAN is to train a discriminator and a generator to maximize the probability of correctly
identifying real samples from the data distribution Pdata(x) (i.e., P (x|Y = 1)):

max
Dφ, fix generator Gθ

1

2
Ex∼P (x|Y=1)[logDφ(x)] +

1

2
Ex∼PGθ

(x)[log(1−Dφ(x))]

and minimize the probability of identifying generated samples from the generator G(θ). Since the
former part is not related to G(θ), we only consider the latter part in minimization:

min
Gθ

1

2
Ex∼PGθ

(x)[log(1−Dφ(x))]

This is the original form of GAN. Let us analyze the problems of the original form.

10.1.2 What if the discriminator Dφ is too powerful?

We first state the problem of the minimization part. In the Bayesian Setting, if Dφ is too powerful, it
would be:

Dφ = D∗(x) =
P(x|Y=1)

1
2P(x|Y=1) +

1
2P(x|Y=0)

=
Pdata(x)

Pdata(x) + PGθ
(x)

.

If conditions apply, the MLE of GAN would be:

Ex∼Pdata
log

Pdata(x)
1
2 [Pdata(x) + PGθ

(x)]
+ Ex∼PGθ

log
PGθ

(x)
1
2 [Pdata(x) + PGθ

(x)]
− 2 log 2

The first part is actually the Kullback-Leibler divergence KL(Pdata||12 [Pdata(x) +PGθ
(x)]) and the

second part is KL(PGθ
||12 [Pdata(x) + PGθ

(x)]), so we can simplify the loss as:
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Ex∼Pdata
log

Pdata(x)
1
2 [Pdata(x) + PGθ

(x)]
+ Ex∼PGθ

log
PGθ

(x)
1
2 [Pdata(x) + PGθ

(x)]
− 2 log 2

= KL(Pdata||
1

2
[Pdata(x) + PGθ

(x)]) + KL(PGθ
||1
2
[Pdata(x) + PGθ

(x)])− 2 log 2.

Given that JS refers to Jensen-Shannon divergence:

JS(Pdata||PGθ
) =

1

2

[
KL(Pdata||

1

2
[Pdata(x) + PGθ

(x)]) + KL(PGθ
||1
2
[Pdata(x) + PGθ

(x)])

]
.

We have the MLE of GAN would be:

2JS(Pdata||PGθ
)− log 2, , JS ∈ [0, log 2].

Without the Gaussian assumption, we have JS → log 2 and the following expressions:

2JS(Pdata||PGθ
)− log 2 ≈ 0.

which means that it is hard to train.
We use a log D trick to rewrite the minimization part as:

min
Gθ

1

2
Ex∼PGθ

(x)[log(1−Dφ(x))] ⇒ min
Gθ

−Ex∼PGθ
(x)[logDφ(x)]

If conditions Dφ = D∗ apply, we have KL(PGθ
||Pdata):

KL(PGθ
||Pdata) = Ex∼PGθ

log
PGθ

Pdata
= Ex∼PGθ

log
1−D∗(x)

D∗(x)

= Ex∼PGθ
(x)[log(1−D∗(x))]− Ex∼PGθ

(x)[logD
∗(x)]

= 2 · 1
2
Ex∼PGθ

(x)[log(1−D∗(x))] + (−Ex∼PGθ
(x)[logDφ(x)]).

So we have:

−Ex∼PGθ
(x)[logDφ(x)] = KL(PGθ

||Pdata)− 2 · 1
2
Ex∼PGθ

(x)[log(1−D∗(x))]

= KL(PGθ
||Pdata)− 2 · (1

2
Ex∼PGθ

(x)[log(1−D∗(x))]

+
1

2
Ex∼Pdata(x)[logD

∗(x)]) + 2 · 1
2
Ex∼Pdata(x)[logD

∗(x)]

= KL(PGθ
||Pdata)− 2JS(Pdata||PGθ

) + 2 log 2 + Ex∼Pdata(x)[logD
∗(x)].

Since 2JS(Pdata||PGθ
) − log 2 ≈ 0, here we try to minimize the KL(PGθ

||Pdata). However, the
problem of directly optimizing KL divergence is outlined as follows:

• Minimizing the KL(PGθ
||Pdata) may lead to PGθ

→ 0 and Pdata → 1, which means a bad
generation.

• Minimizing the KL(PGθ
||Pdata) may lead to PGθ

→ 1 and Pdata → 0, which means a unrealistic
generation.

To avoid unrealistic generation, the optimizer will focus on forcing Pdata to be very large to ensure
safe and real generation, which is called the model collapse problem. While in VAE, there is no such
problem since the KL divergence it optimized is defined on z, not x.
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10.2 WGAN (Wasserstein Generative Adversarial Network)

Recall that traditional GAN uses the JS divergence as a measure to calculate the difference between
the data distribution and the model distribution, which can lead to issues like mode collapse.

min
Gθ,Dφ

JS(Pdata||PGθ
)

WGAN introduces the Wasserstein distance as an alternative to measure the discrepancy between
the data and model distributions. The Wasserstein distance provides smoother gradients everywhere,
which theoretically allows for the training to progress more steadily and makes it less likely to encounter
mode collapse.

min
Gθ

W1(Pdata, PGθ
)

10.2.1 Wasserstein distance

The Wasserstein distance, also known as the Earth mover’s distance (EMD), is a measure of the
distance between two probability distributions over a given metric space. It is named after the math-
ematician Leonid Vaserštejn (Leonid Wasserstein).

The basic idea of the Wasserstein distance is to compute the minimum ”work” required to transform
one probability distribution into another, where ”work” is measured as the amount of distribution
weight that must be moved times the distance it has to be moved.

Mathematically, if we have two probability measures Pdata and PGθ
on a metric space (M,d), the

p-Wasserstein distance between Pdata and PGθ
is defined as:

Wp(Pdata, Pdata) = min
γ∈Γ(Pdata,Pdata),(x1,x2)∼γ

Eγ ∥x1 − x2∥p .

Here, Γ(Pdata, Pdata) is the set of all couplings of Pdata and Pdata, which are measures marginals
Pdata and Pdata on the first and second factors, respectively. The case where p = 1 is the one often
used in the context of GAN:

W1(Pdata, Pdata) = max
f∈1−Lip

EPdata
f(x1)− EPGθ

f(x2).

This equation is called Kantorovich-Rubinstein Duality. In WGAN, the Kantorovich-Rubinstein
Duality is utilized to derive a practical training algorithm. The critic (or discriminator) in WGAN is
trained to approximate the 1-Lipschitz function that realizes the supremum, which in turn provides
the gradient information needed to train the generator so that it can produce samples that minimize
the Wasserstein distance to the real data distribution.

10.3 Optimal Transport Problems

10.3.1 Monge problem

Monge’s problem is a classical formulation in optimal transportation theory where the goal is to find
the most efficient plan to transport a mass distribution, represented by a measure µ, into another
mass distribution, represented by a measure ν, with the least possible cost.

Let X and Y be two separate measurable spaces and let µ be a measure on X and ν be a measure
on Y . Monge’s problem can be formulated as follows:

Find a transport map T : X → Y that minimizes the total transportation cost:

inf
T

∫
X
c(x, T (x)) dµ(x)

subject to the constraint that T pushes µ forward to ν:
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T#µ = ν

This means that for every Borel set B ⊆ Y ,

µ(T−1(B)) = ν(B).

The cost function c(x, y) typically represents the transportation cost for moving a unit mass from
x to y. As an example, one might consider c(x, y) = ∥x − y∥2 for the squared Euclidean distance,
mimicking the ”work” or ”energy” required to perform the transportation.

In this setup, we often require that µ is absolutely continuous with respect to the Lebesgue measure,
ensuring that T is a well-defined map in terms of the Radon-Nikodym derivative.

In calculus of variations, the change of variables trick can be used to convert the problem into a
more tractable form by changing the space over which the objective function is optimized:∫

Y
f(y) dν(y) =

∫
X
f(T (x)) dµ(x).

Here, f is an arbitrary nonnegative function which could be represented by a combination of
indicator functions:

f =
∑
i

ci · 1Ai(x).

Where 1Ai(x) is the indicator function for the set A, taking on a value of 1 if x ∈ A and 0 otherwise.

Proof. We start by proving for indicator functions:

For an indicator function 1B of a measurable set B ⊆ Y ,∫
Y
1B(y) dν(y) = ν(B).

by definition of the integral of an indicator function. Moreover, since ν is the pushforward of µ by
T ,

ν(B) = µ(T−1(B)).

Now for x ∈ X,

1B(T (x)) =

{
1 if T (x) ∈ B

0 otherwise

Therefore, ∫
X
1B(T (x)) dµ(x) =

∫
X
1T−1(B)(x) dµ(x) = µ(T−1(B)) = ν(B).

So this proves the desired equality for indicator functions:∫
Y
1B(y) dν(y) =

∫
X
1B(T (x)) dµ(x).

Next, we extend the result to simple functions:

A simple function s(y) is a finite linear combination of indicator functions,

s(y) =

n∑
i=1

ai1Bi(y),

where ai are constants and Bi are disjoint measurable sets. Since both sides of the integral are
linear, it follows that
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∫
Y
s(y) dν(y) =

n∑
i=1

ai

∫
Y
1Bi(y) dν(y) =

n∑
i=1

ai

∫
X
1Bi(T (x)) dµ(x) =

∫
X
s(T (x)) dµ(x).

Finally, we extend to non-negative measurable functions:

A non-negative measurable function f(y) can be approximated from below by an increasing se-
quence of simple functions sn(y) that converges to f(y) pointwise. This is due to the Monotone
Convergence Theorem.

Since the sequence {sn} converges pointwise to f and sn ≤ f for all n,

lim
n→∞

∫
Y
sn(y) dν(y) =

∫
Y
f(y) dν(y),

and

lim
n→∞

∫
X
sn(T (x)) dµ(x) =

∫
X
f(T (x)) dµ(x).

So, ∫
Y
f(y) dν(y) =

∫
X
f(T (x)) dµ(x).

This completes the proof for non-negative measurable functions f .

For real-valued f which can be negative, you would apply the above argument to the positive part
f+ and the negative part f− of f separately, and combine the results, noting that∫

Y
f(y) dν(y) =

∫
Y
f+(y) dν(y)−

∫
Y
f−(y) dν(y).

and similar for the integral over X.

Remember, the key assumption here that makes this proof work is that the map T “pushes forward”
the measure µ to ν in the sense that ν(B) = µ(T−1(B)) for every measurable set B. If your function
f , spaces X, Y , map T , or measures µ, ν don’t satisfy the requirements needed for this proof,
modifications would have to be made.

10.3.2 Kantorovich problem: a relaxation

In its simplest form, the Kantorovich problem can be described as follows: Imagine you have a certain
amount of goods at several locations (e.g., warehouses) and a number of destinations where the
goods need to be delivered (e.g., stores). You also have a cost function that describes the expense of
transporting the goods from each origin to each destination.

The goal of the Kantorovich problem is to find the most efficient way to transport goods from the
origins to the destinations, minimizing the total transportation cost, subject to the constraints of the
supply at each origin and demand at each destination.

Mathematically, the Kantorovich problem can be formulated as a linear program where you opti-
mize over a transport plan, which is a matrix that specifies how much of the goods to transport from
each origin to each destination. The problem can be expressed as follows:

Given a cost function c(x, y), where x and y are points in two separate spaces (representing the
locations of supply and demand), the Kantorovich problem seeks a transport plan π, which is a
probability measure on the product space of the two, that minimizes the total cost:

min

∫
X×Y

c(x, y) dπ(x, y).

subject to constraints that ensure the marginal distribution of π matches the given supply and
demand distributions µ (on X) and ν (on Y ):
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π(A× Y ) = µ(A) for all measurable sets A ⊆ X,

π(X ×B) = ν(B) for all measurable sets B ⊆ Y.

Assuming that T is the optimal transport map pushing forward µ into ν, T#µ = ν, meaning that
T pushes µ to ν. The cost of transport for mass ”moving” from position x to position T (x) with
respect to the measure µ is given by the left-hand side of the equation:∫

X
c(x, T (x)) dµ(x).

This integral calculates the total cost associated with transporting the distribution µ to ν using
the transport map T , where each point x from X is sent to the point T (x) in Y .

In practice, we often treat the transport problem as a form of linear programming:

min⟨T,C⟩, s.t. constraints defined by distribution vectors a and b

The transport matrix T , where T · 1m = a and T⊤ · 1n = b, specifies the distribution from n
supply points to m demand points with n parameters and m constraints.

The expected cost in the transport problem can be modeled by an integral or expectation:

E[c(X,T (X))] =

∫
c(x, T (x))dµ(x).

We consider a specific case with quadratic costs:

E[∥X − Y ∥2] = E[∥X∥2] + E[∥Y ∥2]− 2E[X⊤Y ].

10.4 Duality in Optimization

10.4.1 General Duality Concept

For a set A and a point x, the duality concept can be expressed as follows:

d(A, x) = min
a∈A

d(x, a) = max
s separates A,x

d(x, s).

where s is the boundary separating point x from set A.

10.4.2 Dual Form Derivation

Consider the primal optimization problem:

min
x∈D

f(x), subject to some constraints.

Here, f(x) is a function to be minimized over the domain D.
Transforming it into the Lagrangian form with the use of Lagrange multipliers λ and y for the

inequality constraints g(x) ≤ 0 and the equality constraint h(x) = 0, respectively, we obtain the
Lagrangian:

L(x, λ, y) = f(x) + λ⊤g(x) + y⊤h(x).

The dual problem involves flipping the min and max, expressed as:

max
λ≥0,y

min
x∈D

L(x, λ, y).

This forms the dual optimization problem, where λ is the vector of Lagrange multipliers for the
inequality constraints, and g(x) ≥ 0 ensures feasibility.
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10.4.3 Wasserstein Case

Considering the Wasserstein distance, a special case in optimal transport:

inf
π∈Π

∫
X×Y

c(x, y) · π(x, y) dx dy,

where π ∈ Π(PX , PY ) is a transport plan within the set of all possible plans between the probability
measures PX and PY , and c(x, y) is the cost function, often chosen to be a distance measure between
x and y.

Consider any transport map π(x, y) without constraints. The optimality condition can be given
as:

µ(x)−
∫
Y
π(x, y) dy = 0.

Additionally, for π in some set of transport plans UV , we have the following conditions:

ν(y)−
∫
X
π(x, y) dx = 0,

−π(x, y) ≤ 0.

The Lagrangian L(Π, ϕ, ψ, τ) can be expressed as:

L(Π, ϕ, ψ, τ) =Ck(π) +

∫
ϕ(x)

[
µ(x)−

∫
Y
π(x, y) dy

]
dx

+

∫
ψ(y)

[
v(y)−

∫
X
π(x, y) dx

]
dy

+

∫ ∫
τ(x, y) [−π(x, y)] dxdy.

The primal problem can be stated as finding the infimum of the Lagrangian form:

inf
π∈Π

sup
ϕ,ψ,τ≥0

L(Π, ϕ, ψ, τ)

Moreover, we derive the inner integration in the Lagrangian formulation concerning measures and
potential functions: [Not sure]

∫
L(Π, ϕ, ψ, τ) = inf

Π

∫
π(x, y) [c(x, y)− τ(x, y)− ϕ(x),−ψ(y)] dy.

And we have:

c(x, y)− τ(x, y)− ϕ(x)− ψ(y) = 0, when Π(x, y) > 0.

Upon eliminating terms, we have:

c(x, y)− ϕ(x)− ψ(y) ≥ 0.

Thus we have the dual formulation:

sup
ϕ,ψ

(∫
ϕ(x) du(x) +

∫
ψ(y) dv(y)

)
, subject to ϕ(x) + ψ(y) ≤ c(x, y)
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10.4.4 Economic Explanation[Not sure]

Here we introduce an optimization problem, characterized by the following expressions:

inf

{∫ ∫
c(x, y) · π(x, y) dx dy

}
,

where we minimize the cost function subject to certain constraints:

u(x) + v(y) = c(x, y), (1)

u(x) ≥ v(y). (2)

We interpret (2) as the utility gained by the payor as greater than or equal to the utility of the
vendor, suggesting an economic transaction.

The collection fee (ϕ(x)) and delivery fee (ψ(y)) are presumably related to the utility functions
described above.


