COMP 7070 Advanced Topics in AI and ML
\title{ Lecture 6: Johnson-Lindenstrauss \& Matrix Sketching }
Instructor: Yifan Chen Scribes: Hongduan Tian, Yi Ding Proof reader: Zhanke Zhou

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Johnson-Lindenstrauss Lemma

In this section, we are going to learn about Johnson-Lindenstrauss Lemma, which has been highly impactful in the design of algorithms for high-dimensional delta.

Theorem 6.1 (JL lemma). For any $\varepsilon \in(0,1)$ and any $X \in \mathbb{R}^{d}$ for $|X|=n$ finite, there exists an embedding $f: X \rightarrow \mathbb{R}^{m}$ for $m=O\left(\varepsilon^{-2} \log n\right)$ such that

$$
\begin{equation*}
\forall x, y \in X,(1-\varepsilon)\|x-y\|_{2}^{2} \leq\|f(x)-f(y)\|_{2}^{2} \leq(1+\varepsilon)\|x-y\|_{2}^{2} . \tag{6.1}
\end{equation*}
$$

A simple intuition of Theorem 6.1 is that the distance between the embeddings of two data points, which are randomly sampled from space \mathbb{R}^{d}, is bounded, and the bound is related to the distance of the two data points in \mathbb{R}^{d} space. In other words, a set of data points in a high-dimensional space can be embedded into a much lower dimension in a way that the distance information is nearly preserved.

With the desirable property of the Johnson-Lindenstrauss lemma in Theorem 6.1, the algorithms that contain heavy matrix computation can be improved:

- Approximate Matrix Multiplication (AMM). Consider two matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{B} \in$ $\mathbb{R}^{n \times n}$, the complexity of the multiplication $\boldsymbol{A B}$ is $O\left(n^{3}\right)$. According to JL lemma, by embedding \boldsymbol{A} and \boldsymbol{B} to lower dimension with the transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $m<n$, we can approximate $\boldsymbol{A B}$ with $f(\boldsymbol{A}) f(\boldsymbol{B})$. Then, the complexity is reduced to $O\left(n^{2} m\right)$.
- Graph Convolutional Network (GCN). In graph convolutional network, given an adjacency matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N}$, the hidden state of the last layer $\boldsymbol{H}^{t-1} \in \mathbb{R}^{N \times \operatorname{dim}}$ and a set of weights $\boldsymbol{W} \in \mathbb{R}^{\text {dim } \times \text { dim }}$, the output of current layer can be calculated as: $\boldsymbol{A} \boldsymbol{H}^{t-1} \boldsymbol{W}$. In this case, matrices with lower dimensions can also be applied for efficient computation: $\boldsymbol{A} \boldsymbol{S} \boldsymbol{S}^{\top} \boldsymbol{H}^{t-1} \boldsymbol{W}$, where $\boldsymbol{S} \in \mathbb{R}^{d \times d^{\prime}}, d^{\prime}<d$.
- Attention Calculation. Attention mechanism is also computationally dense. Given query matrix \boldsymbol{Q}, key matrix \boldsymbol{K} and value matrix \boldsymbol{V}, the attention features $\boldsymbol{H} \in \mathbb{R}^{d \times d}$ can be calculated in the way:

$$
\boldsymbol{H}=\operatorname{softmax}\left(\frac{\boldsymbol{Q} \cdot \boldsymbol{K}^{\top}}{\sqrt{d}}\right) \cdot \boldsymbol{V} .
$$

By introducing $\boldsymbol{S} \in \mathbb{R}^{d \times d^{\prime}}, d^{\prime}<d, \boldsymbol{H}$ can be further calculated as:

$$
\boldsymbol{H}=\operatorname{softmax}\left(\frac{\boldsymbol{Q} \cdot \boldsymbol{K}^{\top}}{\sqrt{d}}\right) \boldsymbol{S} \boldsymbol{S}^{\top} \boldsymbol{V} .
$$

6.1.1 Distributed Johnson-Lindenstrauss Lemma (DJL).

Lemma 6.2. For any $\varepsilon, \delta \in(0,1 / 2)$ and integer $d>1$, there exists a distribution $\mathcal{D}_{\varepsilon, \delta}$ over matrices $\Pi \in \mathbb{R}^{m \times d}$ for $m=O\left(\varepsilon^{-2} \log (1 / \delta)\right)$ such that for any fixed $z \in \mathbb{R}$ with $\|z\|_{2}=1$,

$$
\mathbb{P}_{\Pi \sim \mathcal{D}_{\varepsilon, \delta}}\left(\| \| \Pi_{z} \|_{2}^{2}-1 \mid>\varepsilon\right)<\delta .
$$

Based on Lemma. 6.2, assume that $\delta \leq \frac{1}{n^{2}}, Z=\frac{X-Y}{\|X-Y\|}$, with other mild assumptions, we have:

$$
\begin{aligned}
\mathbb{E}_{X, Y} & =\left\{\left|\|\Pi Z\|^{2}-1\right|>\varepsilon\right\} \\
& =\left\{\left|\|\Pi(X-Y)\|^{2}-\|X-Y\|^{2}\right|>\varepsilon\|X-Y\|^{2}\right\} .
\end{aligned}
$$

Since $|X|=|Y|=n$, we then have $\frac{n(n-1)}{2}$ pairs. Then, we have:

$$
\mathbb{P}\left(\bigcup_{X, Y} \mathbb{E}_{X, Y}\right) \leq \sum_{X, Y} \mathbb{P}\left(\mathbb{E}_{X, Y}\right)=\frac{n(n-1)}{2} \delta .
$$

Thus, with the probability of least $1-c$, the JL lemma would hold.

6.2 Sketching Method

6.2.1 Sketch

Let replace a vector/matrix x / X by its sketch $\Pi x / X \Pi^{\top}$, then we have:

$$
\|\Pi z\|^{2} \rightarrow 1 \Longleftrightarrow z^{\top} \Pi^{\top} \Pi z \rightarrow 1 .
$$

When $z^{\top} z=1$ holds, we have to ensure that $\mathbb{E} \Pi^{\top} \Pi=I$, where I denotes the identity matrix. Here, we introduce two applications:

- Coordinate. Consider a special case where $\Pi \in \mathbb{R}^{1 \times m}$, then it will be uniformly distributed in the set $\left\{\sqrt{d} e_{i}\right\}_{i=1}^{d}$. Then, we have:

$$
\mathbb{E} \Pi^{\top} \Pi=\frac{1}{d} \sum_{i=1}^{d} d \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top}=I .
$$

- AMM. The other application is approximate matrix multiplication, such as

$$
B^{\top} \Pi^{\top} \Pi C \approx B^{\top} C_{d \times n} \quad \text { if } \quad m \ll d
$$

6.3 Matrix Concentration Sketching

6.3.1 Sub-Gaussian Random Variable

Definition 6.3 (Moment Generating Function, MGF). Given a random variable $X \sim \operatorname{subG}\left(\sigma^{2}\right)$, where $\mathbb{E}(X)=0$, for $\forall \lambda \in \mathbb{R}$, the moment generating function satisfies:

$$
\mathbb{E} \exp (\lambda(X-\mu)) \leq \exp \left(\frac{\sigma^{2} \lambda^{2}}{2}\right)
$$

Lemma 6.4. Let $X \sim \operatorname{subG}\left(\sigma^{2}\right)$, then for any $p \geq 1$,

$$
\mathbb{E}\left[|X|^{p}\right] \leq\left(2 \sigma^{2}\right)^{p / 2} p \Gamma\left(\frac{p}{2}\right) .
$$

In particular,

$$
\mathbb{E}\left[|X|^{p}\right]^{1 / p} \leq \sigma e^{1 / e} \sqrt{p} .
$$

Proof. We first calculate $\mathbb{E}\left[|X|^{p}\right]$:

$$
\begin{aligned}
\mathbb{E}\left[|X|^{p}\right] & =\int_{0}^{\infty} \mathbb{P}\left(|X|^{p}>t\right) d t \\
& =\int_{0}^{\infty} \mathbb{P}\left(|X|>t^{1 / p}\right) d t \\
& \leq 2 \int_{0}^{\infty} e^{-\frac{t^{2 / p}}{2 \sigma^{2}}} d t \\
& =\left(2 \sigma^{2}\right)^{2 / p} p \int_{0}^{\infty} e^{-u} u^{p / 2-1} d u, \quad u=-\frac{t^{2 / p}}{2 \sigma^{2}} \\
& =\left(2 \sigma^{2}\right)^{p / 2} p \Gamma(p / 2), \quad \Gamma(n)=\int_{0}^{\infty} e^{-u} u^{n-1} d u=(n-1)!.
\end{aligned}
$$

With the conditions: $\Gamma(p / 2) \leq(p / 2)^{p / 2}$ and $p^{1 / p} \leq e^{1 / e}$ for any $p \geq 2$, we further have:

$$
\begin{aligned}
\left(\left(2 \sigma^{2}\right)^{p / 2} p \Gamma(p / 2)\right)^{1 / p} & =\left(\left(2 \sigma^{2}\right)^{p / 2}\right)^{1 / p} p^{1 / p}(\Gamma(p / 2))^{1 / p} \\
& =\sqrt{2} \sigma \cdot p^{1 / p}(\Gamma(p / 2))^{1 / p} \\
& \leq \sqrt{2} \sqrt{p / 2} \\
& =\sigma e^{1 / e} \sqrt{p}
\end{aligned}
$$

Where K_{2} is the sub-Gaussian norm and $K_{2} \sim \sigma$. For a large K_{2}, X is not very sub-Gaussian.

$$
\|X\|_{\Psi_{2}}=K_{2}
$$

6.3.2 Sub-Gaussian Random Vector X.

Definition 6.5. For $\forall x \in \mathbb{R}^{d},\langle X, x\rangle$ is sub-Gaussian. Then, we have

$$
\|X\|_{\Psi_{2}}:=\sup _{x \in \mathcal{S}^{d-1}}\|<X, x>\| \|_{\Psi_{2}}
$$

For coordinate $<X, x>=\sqrt{d} \sum_{i=1}^{d} x_{i} \mathbb{I}_{\{\omega=i\}}$, we then have $\|X\|_{\Psi_{2}} \sim \sqrt{d}$.

6.4

Given a matrix Π with independent sub-Gaussian rows, where $\frac{1}{m} \mathbb{E} \Pi^{\top} \Pi=I$, we then have:

$$
\sqrt{m}-C \sqrt{d}-t \leq \mathcal{S}_{\min }(\Pi) \leq \mathbb{S}_{\max }(\Pi) \leq \sqrt{m}+C \sqrt{d}+t
$$

with the probability at least $1-2 \exp \left(-c t^{2}\right)$.
(1) ε-net to approximate \mathcal{S}^{d-1}

Definition 6.6 (ε-net). Given $\mathcal{N} \subseteq \mathcal{S}^{d-1}$ and $\forall x \in \mathcal{S}^{d-1}$, we can have $d(x, y) \leq \varepsilon$, where $y \in \mathcal{N}^{\varepsilon}$ and $d(\cdot, \cdot)$ is a distance measure.

A special case of ε-net is covering number $\mathcal{N}\left(\mathcal{S}^{d-1}, \varepsilon\right)$, which is the minimal cardinality of $\mathcal{N}_{\varepsilon}$.
Bound of $\mathcal{N}\left(\mathcal{S}^{d-1}, \varepsilon\right)$ Here, we explore the bound of $\mathcal{N}\left(\mathcal{S}^{d-1}, \varepsilon\right)$.

- Consider the maximal ε-separated subset of \mathcal{S}^{d-1}, then for $\forall y_{1}, y_{2}, d\left(y_{1}, y_{2}\right)>\varepsilon$.
- Such a subset aforementioned is a ε-net, o.w. $\exists x \in \mathcal{S}^{d-1}, d\left(x, y_{i}\right)>\varepsilon$. Then, the point can be added to the subset.
- Based on the content above, we can formulate the relationship as follows:

$$
\sum \frac{\varepsilon}{2} \mathcal{B} \leq\left(1+\frac{\varepsilon}{2}\right) \mathcal{B}
$$

where \mathcal{B} denotes the volume of a unit ℓ_{2} ball of \mathbb{R}^{d}. Then, we have:

$$
\left|\mathcal{N}_{\varepsilon}\right|\left(\frac{\varepsilon}{2}\right)^{d} \leq\left(1+\frac{\varepsilon}{2}\right)^{d}
$$

Prove $1-\delta \leq \mathcal{S}_{\min }(\Pi) \leq \mathcal{S}_{\max }(\Pi) \leq 1+\delta$. The proof can be equivalently transformed to prove $\left\|\Pi^{\top} \Pi-I\right\| \leq \max \left(\delta, \delta^{2}\right)$.

Proof.

$$
|||\Pi x||-1| \equiv|Z-1| \leq \max \left\{|Z-1|,|Z-1|^{2}\right\}
$$

When $Z \in[0,2]$, then

$$
\max \left\{|Z-1|,|Z-1|^{2}\right\}=|Z-1| \leq\left|Z^{2}-1\right|
$$

If $\delta>1$, then $|Z-1| \leq 1<\delta$; otherwise,

$$
\begin{aligned}
|Z-1| & \leq\left|Z^{2}-1\right| \\
& =\left|x^{\top} \Pi^{\top} \Pi x-x^{\top} x\right| \\
& =\left|x^{\top}\left(\Pi^{\top} \Pi-I\right) x\right| \\
& \leq \| \Pi^{\top} \Pi-I| | \quad \leq \max \left(\delta, \delta^{2}\right) \\
& =\delta
\end{aligned}
$$

When $Z>2$, then $|Z-1|^{2} \leq\left|Z^{2}-1\right| \leq \max \left(\delta, \delta^{2}\right)=\delta$.
Thus, we can say that $1-\delta \leq \mathcal{S}_{\min }(\Pi) \leq \mathcal{S}_{\max }(\Pi) \leq 1+\delta$ holds for $\forall x,\||\Pi x \|-1| \leq \delta$.
The bound can be given up to a constant factor with a $\frac{1}{4}$-net. Consider $\exists x_{1} \in \mathcal{S}^{d-1},\|A\|=$ $x_{1}^{\top} A x_{1}, \exists y \in \mathcal{N}_{\frac{1}{4}}, d\left(x_{1}, y\right) \leq \frac{1}{4}$, we then have

$$
\begin{aligned}
\left|<A x_{1}, x_{1}>-<A y, y>\right| & =\left|<A x_{1}, x_{1}-y>+<A\left(x_{1}-y\right), y>\right| \\
& \leq\|A\| \cdot\left\|x_{1}\right\| \cdot\left\|x_{1}-y\right\|\|+\| A\|\cdot\| x_{1}-y\|\cdot\| y \| \\
& =2\|A\| \cdot\left\|x_{1}-y\right\| \\
& =2\|A\| \cdot d\left(x_{1}, y\right) \\
& \leq \frac{1}{2}\|A\| .
\end{aligned}
$$

$\Rightarrow<A y, y>\leq<A x_{1}, x_{1}>-\frac{1}{2}\|A\|=\frac{1}{2}\|A\|$.
$\Rightarrow\|A\| \leq 2 \cdot y^{\top} A y \leq 2 \cdot \max _{y \in \mathcal{N}_{\frac{1}{4}}} y^{\top} A y$.
The above conclusion is also equivalent to:

$$
2 \cdot \max _{x \in \mathcal{N}_{\frac{1}{4}}}\left|\frac{1}{m}\|\Pi x\|^{2}-1\right| \leq \varepsilon
$$

(2) Concentration: $\|\Pi x\|^{2}=\sum_{i=1} m<\Pi_{i}, x>^{2}$, where $Z_{1}=<\Pi_{i}, x>$ and $\mathbb{E} Z_{i}^{2}=1$.
(3) Union bound:

$$
\mathbb{P}\left(\max _{x \in \mathcal{N}_{\frac{1}{4}}}\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}^{2}(x)-1\right|>\frac{\varepsilon}{2}\right) \leq\left|\mathcal{N}_{\frac{1}{4}}\right| \cdot 2 \cdot \exp \left(-\frac{\varepsilon^{2}}{128 \sigma^{2}}\right)
$$

