Lecture 5: SubGaussian Random Variables and Concentration Inequalities
 Instructor: Yifan Chen Scribes: Xiong Peng, Riwei Lai Proof reader: Zhanke Zhou

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Basic Inequalities

We present several fundamental inequalities used in probability theory.
(1) Markov's Inequality: For a non-negative random variable X, the probability that X is at least t is bounded by the expected value of X over t :

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t}, \quad \text { for } X \geq 0
$$

Proof. The expected value of X is:

$$
\mathbb{E}[X]=\int_{0}^{\infty} x \cdot p(x) d x
$$

This can be split as:

$$
\int_{0}^{t} x \cdot p(x) d x+\int_{t}^{\infty} x \cdot p(x) d x
$$

Since $x \geq t$ for the second integral, we have:

$$
\mathbb{E}[X] \geq \int_{t}^{\infty} t \cdot p(x) d x=t \cdot P(X \geq t)
$$

(2) Chebyshev's Inequality: For a random variable X with mean μ and variance $\operatorname{Var}(X)$, the probability that the deviation of X from μ is at least t is bounded by the variance over t^{2} :

$$
P(|X-\mu| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proof. Apply Markov's inequality to the non-negative random variable $|X-\mu|^{2}$, we have

$$
L H S=P\left(|X-\mu|^{2} \geq t^{2}\right) \leq \frac{1}{t^{2}} \mathbb{E}\left[|X-\mu|^{2}\right]=R H S
$$

(3) Chernoff Bound: The Chernoff bound combines the moment generating function with Markov's inequality to provide an exponential bound on the tail probabilities.

$$
\begin{gathered}
P(X-\mu \geq t)=P(\exp (\lambda(X-\mu)) \geq \exp (\lambda t)), \quad \forall \lambda>0 \\
\leq \exp (-\lambda t) \cdot \mathbb{E}[\exp (\lambda(X-\mu))], \quad \lambda \in[-b, b]
\end{gathered}
$$

Let $\phi(\lambda) \equiv \mathbb{E}[\exp (\lambda(X-\mu))]$, this leads to:

$$
\begin{aligned}
& P(X-\mu \geq t) \leq \exp (-\lambda t) \cdot \phi(\lambda), \quad \forall \lambda \in[0, b] \\
& \quad \Longrightarrow P(X-\mu \geq t) \leq \inf _{\lambda \in[0, b]} \exp (-\lambda t) \cdot \phi(\lambda)
\end{aligned}
$$

5.2 Subgaussian

5.2.1 Definition

A random variable X, subject to $\mathbb{E}[\exp (\lambda(X-\mu))] \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)$ for all $\lambda \in \mathbb{R}$.
(1) Subgaussian with Chernoff bound.

$$
P(X-\mu \geq t) \leq \inf _{\lambda>0} \exp (-\lambda t) \Phi(\lambda) \leq \inf _{\lambda>0} \exp \left(\frac{1}{2} \sigma^{2} \lambda^{2}-\lambda t\right) .
$$

where $\lambda=\frac{t}{\sigma^{2}}$, then we have

$$
P(X-\mu \geq t) \leq \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) .
$$

If X is subgaussian, then $-X$ is also subgaussian.

$$
P(-X-(-\mu) \geq t)=\mathbb{P}(X-\mu \leq-t) \leq \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) .
$$

Therefore,

$$
P(|X-\mu| \geq t) \leq 2 \cdot \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

(2) Any bounded random variable is subgaussian.

Proof. Let $X \in[a, b]$ almost surely. Then

$$
\begin{aligned}
\mathbb{E}[\exp (\lambda(X-\mu))] & =\mathbb{E}_{X} \exp \left(\lambda\left(X-\mathbb{E}\left[X^{\prime}\right]\right)\right), \\
& \leq \mathbb{E}_{X} \mathbb{E}_{X}^{\prime} \exp \left(\lambda\left(X-X^{\prime}\right)\right) \\
& =\mathbb{E}_{X} \mathbb{E}_{X}^{\prime}\left[\mathbb{E}_{\epsilon} \exp \left(\lambda\left(X-X^{\prime}\right) \cdot \epsilon\right)\right]
\end{aligned}
$$

ϵ is a Rademacher random variable, meaning $\epsilon=\left\{1\right.$ with probability $\frac{1}{2},-1$ with probability $\left.\frac{1}{2}\right\}$, thus we have

$$
\begin{aligned}
\mathbb{E}_{\epsilon} \exp \left(\lambda \cdot\left(X-X^{\prime}\right) \cdot \epsilon\right) & =\frac{1}{2} \exp \left(\lambda \cdot\left(X-X^{\prime}\right)\right)+\frac{1}{2} \exp \left(\lambda \cdot\left(X^{\prime}-X\right)\right) \\
& \leq \exp \left(\frac{1}{2} \lambda^{2} \cdot\left(X-X^{\prime}\right)^{2}\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\mathbb{E}[\exp (\lambda(X-\mu))] & \leq \mathbb{E}_{X} \mathbb{E}_{X}^{\prime} \exp \left(\frac{1}{2} \lambda^{2}\left(X-X^{\prime}\right)^{2}\right) \\
& \leq \exp \left(\frac{1}{2} \lambda^{2}(b-a)^{2}\right)
\end{aligned}
$$

Hence X is subgaussian with $\sigma^{2}=(b-a)^{2}$.
(3) Additivity of Subgaussian.

Let X_{i} be subgaussian, i.e. $X_{i} \sim \operatorname{SubG}\left(\sigma_{i}^{2}\right)$, then $\sum X_{i}$ is also subgaussian given X_{i} 's are independent, and $\sum X_{i} \sim \operatorname{SubG}\left(\sum \sigma_{i}^{2}\right)$.
We can further derive the Hoeffding bound:

$$
P\left(\sum\left(X_{i}-\mu\right) \geq t\right) \leq \exp \left(-\frac{t^{2}}{2 \sum \sigma_{i}^{2}}\right) .
$$

(4) If we know $P(|X|>t)$, then we can have:

$$
\mathbb{E}\left[|X|^{k}\right]=\int_{0}^{\infty} P\left(|X|^{k}>t\right) d t \leq \int_{0}^{\infty} 2 \cdot \exp \left(-\frac{t^{2 / k}}{2 \sigma^{2}}\right) d t
$$

by using the bound for $P(|X|>t)$:

$$
P(|X|>t) \leq 2 \cdot \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
$$

We can get:

$$
\mathbb{E}\left[|X|^{k}\right] \approx\left(2 \sigma^{2}\right)^{\frac{k}{2}} \cdot k \cdot \Gamma\left(\frac{k}{2}\right)=\mathcal{O}\left(\sigma^{k}\right)
$$

5.2.2 $\quad f(X)-\mathbb{E} f(X)$

Let $f(X) \equiv f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, if f has a bounded difference, $f(X)-\mathbb{E} f(X)$ will be subgaussian.
(1) Doob construction. Construct a martingale with $f(X)$ and $X_{1: n}$.

$$
Y_{k}=\mathbb{E}\left[f(X) \mid F_{k}\right], \quad \mathcal{F}_{k}=\sigma\left(X_{1}, \ldots, X_{k}\right)
$$

Definition of martingale:

$$
\mathbb{E}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]=Y_{k}
$$

Which can be derived as follows:

$$
\mathbb{E}\left[Y_{k+1} \mid \mathcal{F}_{k}\right]=\mathbb{E}\left[\mathbb{E}\left[f(X) \mid \mathcal{F}_{k+1}\right] \mid \mathcal{F}_{k}\right] \quad \text { Tower property } \mathbb{E}\left[f(X) \mid \mathcal{F}_{k}\right] \equiv Y_{k}
$$

Let

$$
D_{k}=Y_{k}-Y_{k-1}
$$

then

$$
\mathbb{E}\left[D_{k+1} \mid \mathcal{F}_{k}\right]=\mathbb{E}\left[Y_{k+1}-Y_{k} \mid \mathcal{F}_{k}\right]=0
$$

finally,

$$
Y_{n}-Y_{0}=f(X)-\mathbb{E}[f(X)]=\sum_{i=1}^{n} D_{k}
$$

(2) Azuma-Hoeffding. For $D_{k} \in\left[a_{k}, b_{k}\right], \sum_{k=1}^{n} D_{k}$ is subG.

Proof.

$$
\mathbb{E}\left[\exp \left(\lambda \sum_{k=1}^{n} \cdot D_{k}\right)=\mathbb{E}\left[\mathbb{E}\left[\exp \left(\lambda \cdot \sum_{k=1}^{n} D_{k}\right) \cdot \exp \left(\lambda D_{n} \mid \mathcal{F}_{n-1}\right)\right]\right]\right.
$$

and we have

$$
\mathbb{E}\left[\exp \left(\lambda \sum_{k=1}^{n} \cdot D_{k}\right)=\mathbb{E}\left[\exp \left(\lambda \cdot \sum_{k=1}^{n-1} D_{K}\right)\right] \cdot \mathbb{E}\left[\exp \left(\lambda D_{n}\right) \mid \mathcal{F}_{n-1}\right]\right.
$$

since $D_{k} \mid \mathcal{F}_{k-1}$ bdd is subG, we have

$$
\mathbb{E}\left[\exp \left(\lambda D_{k}\right) \mid \mathcal{F}_{k-1}\right] \leq \exp \left(\frac{\lambda^{2}\left(b_{k}-a_{k}\right)^{2}}{8}\right)
$$

then

$$
\mathbb{E}\left[\exp \left(\lambda \sum_{k=1}^{n} \cdot D_{k}\right) \leq \mathbb{E}\left[\exp \left(\lambda \cdot \sum_{k=1}^{n-1} D_{K}\right)\right] \cdot \exp \left(\frac{\lambda^{2}\left(b_{k}-a_{k}\right)^{2}}{8}\right) \leq \exp \left(\frac{\lambda^{2}}{8} \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}\right)\right.
$$

thus $\sum D_{k}$ is subG with $\sigma^{2}=\frac{1}{4} \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}$.
(3) Bounded Difference Inequality.

$$
\forall x, x_{k}^{\prime}
$$

if

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}_{k}^{\prime}\right)\right| \leq L_{k}
$$

Here

$$
\mathbf{x}_{k}^{\prime}= \begin{cases}x_{k}^{\prime}, & \text { if } x_{k}=x_{k}^{\prime} \\ x_{j}, & \text { if } x_{k} \neq x_{k}^{\prime}\end{cases}
$$

Define $\sum D_{k}=f(\mathbf{x})-\mathbb{E} f(\mathbf{x})$, we have $\sum D_{k}$ is subG.

Proof. Using Azuma-Hoeffding inequality to show D_{k} is bounded:
Let

$$
\begin{gathered}
D_{k}=Y_{k}-Y_{k-1} \\
A_{k}=\inf _{x} \mathbb{E}\left[f(\mathbf{x}) \mid \mathbf{X}_{1 \sim k-1}, \mathbf{X}_{k}=x\right]-Y_{k-1} \\
B_{k}=\sup _{x} \mathbb{E}\left[f(\mathbf{x}) \mid \mathbf{X}_{1 \sim k-1}, \mathbf{X}_{k}=x\right]-Y_{k-1}
\end{gathered}
$$

Then we have

$$
\begin{gathered}
A_{k} \leq D_{k} \leq B_{k} \\
\left.\left.B_{k}-A_{k} \leq \sup _{x, y} \mathbb{E}\left[f(\mathbf{X})_{1 \sim k-1}, x, \mathbf{X}_{k+1 \sim n}\right)\right]-\mathbb{E}\left[f(\mathbf{X})_{1 \sim k-1}, y, \mathbf{X}_{k+1 \sim n}\right)\right] \leq \sup _{x, y} L_{k}=L_{k}
\end{gathered}
$$

So that D_{k} is bdd.
By Azuma-Hoeffding inequality, we have $\sum D_{k}$ is subG, which completes the proof.
(4) Rademacher complexity: the complexity of a vector collection \mathcal{A} :

$$
\left\{\left[\begin{array}{c}
c f\left(x_{1}\right) \\
\vdots \\
\left.f\left(x_{n}\right)\right]
\end{array}\right],\left[\begin{array}{c}
c f^{\prime}\left(X_{1}\right) \\
\vdots \\
f^{\prime}\left(X_{n}\right)
\end{array}\right], \ldots\right\}, \text { where } f \in \mathcal{F} \Rightarrow \text { all the models. }
$$

Assume that ε is a Rademacher vector, we have

$$
\mathbb{E}_{\varepsilon} Z(\mathcal{A})=\mathbb{E} \sup _{a \in \mathcal{A}}\langle a, \varepsilon\rangle
$$

Define $\varepsilon \rightarrow \varepsilon^{\prime k}$ as the k-th element of $\varepsilon^{\prime k} \neq \varepsilon_{k}$ and $f(\varepsilon)$ as $Z(\mathcal{A})$, we have $f(\varepsilon)-f\left(\varepsilon^{\prime k}\right)$ has bounded difference.

Proof. Since

$$
f\left(\varepsilon^{\prime k}\right)=\sup _{a \in \mathcal{A}}\left\langle a, \varepsilon^{\prime k}\right\rangle \geq\left\langle a, \varepsilon^{\prime k}\right\rangle, \forall a \in \mathcal{A}
$$

Which can be transferred to:

$$
\langle a, \varepsilon\rangle-f\left(\varepsilon^{\prime k}\right) \leq\left\langle a, \varepsilon-\varepsilon^{\prime k}\right\rangle, \forall a \in \mathcal{A}
$$

And we have

$$
\sup _{a}\langle a, \varepsilon\rangle-f\left(\varepsilon^{\prime k}\right) \leq \sup _{a}\left\langle a, \varepsilon-\varepsilon^{\prime k}\right\rangle
$$

So, finally, we have

$$
f(\varepsilon)-f\left(\varepsilon^{\prime k}\right) \leq \sup _{a} 2 \cdot\left|a_{k}\right|=: L_{k}
$$

which completes the proof.
(5) Maximal Inequality: (worst case won't happen w.h.p.)

$$
\frac{1}{n} \sum z_{i} \rightarrow \infty \Rightarrow \text { w.h.p }\left|\frac{1}{n} \sum z_{i}\right| \leq t
$$

Given $X_{i \sim N}$ not i.i.d. but $\mathbb{E}\left[\max _{i} X_{i}\right]$ is sub-G $\left(\delta^{2}\right)$
(1) $\mathbb{E}\left[\max _{i} X_{i}\right]=\frac{1}{s} \mathbb{E}\left[\log \left(\exp \left(s \cdot \max _{i} X_{i}\right)\right)\right], \quad \forall s>0$

$$
\begin{aligned}
& \leq \frac{1}{s} \log \left(\mathbb{E}\left[\exp \left(s \cdot \max _{i} X_{i}\right)\right]\right) \\
& =\frac{1}{s} \log \left(\mathbb{E}\left[\max _{i} \exp \left(s \cdot X_{i}\right)\right]\right) \\
& \leq \frac{1}{s} \log \left(\mathbb{E}\left[\sum_{i} \exp \left(s \cdot X_{i}\right)\right]\right) \\
& =\frac{1}{s} \log \left(\sum_{i} \exp \left(\frac{\delta^{2} s^{2}}{2}\right)\right) \\
& =\frac{1}{s} \log N+\frac{\delta^{2}}{2} S, \quad \forall s>0 \\
\Rightarrow L H S & \leq \inf _{s>0} R H S=\delta \cdot \sqrt{2 \log N}
\end{aligned}
$$

(2) $\quad \mathbf{P}\left(\max _{i} X_{i}>t\right)=\mathbf{P}\left(\bigcup_{i}\left(X_{i}>t\right)\right)$

$$
\leq \sum_{i} \mathbf{P}\left(X_{i}>t\right)=N \cdot \exp \left(-\frac{t^{2}}{2 \delta^{2}}\right)
$$

$$
\Rightarrow N \cdot \exp \left(-\frac{t^{2}}{2 \delta^{2}}\right) \leq \varepsilon \Rightarrow t=O\left(\delta \cdot \sqrt{\log \frac{N}{\varepsilon}}\right)
$$

(3) $\mathbb{E}\left[\max _{i}\left|X_{i}\right|\right]=\mathbb{E}\left[\max _{i \in[N]} \max \left\{X_{i},-X_{i}\right\}\right] \leq \delta \cdot \sqrt{2 \log (2 N)}$.

$$
\text { (4) } \mathbf{P}\left(\max _{i}\left|X_{i}\right|>t\right) \leq 2 N \cdot \exp \left(-\frac{t^{2}}{2 \delta^{2}}\right)
$$

(6) HW: Proof Thm 1.9. of Chapter 1.

$$
\mathbb{E}\left[\max _{\Theta \in \mathcal{B}_{2}} \Theta X\right] \leq 4 \delta \sqrt{d}
$$

