COMP 7070 Advanced Topics in AI and ML

February 06, 2024

Lecture 5: SubGaussian Random Variables and Concentration Inequalities

Instructor: Yifan Chen Scribes: Xiong Peng, Riwei Lai

Proof reader: Zhanke Zhou

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Basic Inequalities

We present several fundamental inequalities used in probability theory.

(1) Markov's Inequality: For a non-negative random variable X, the probability that X is at least t is bounded by the expected value of X over t:

$$P(X \ge t) \le \frac{\mathbb{E}[X]}{t}, \text{ for } X \ge 0.$$

Proof. The expected value of X is:

$$\mathbb{E}[X] = \int_0^\infty x \cdot p(x) \, dx.$$

This can be split as:

$$\int_0^t x \cdot p(x) \, dx + \int_t^\infty x \cdot p(x) \, dx.$$

Since $x \ge t$ for the second integral, we have:

$$\mathbb{E}[X] \ge \int_t^\infty t \cdot p(x) \, dx = t \cdot P(X \ge t).$$

(2) Chebyshev's Inequality: For a random variable X with mean μ and variance Var(X), the probability that the deviation of X from μ is at least t is bounded by the variance over t^2 :

$$P(|X - \mu| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$$

Proof. Apply Markov's inequality to the non-negative random variable $|X - \mu|^2$, we have

$$LHS = P(|X - \mu|^2 \ge t^2) \le \frac{1}{t^2} \mathbb{E}[|X - \mu|^2] = RHS.$$

(3) **Chernoff Bound**: The Chernoff bound combines the moment generating function with Markov's inequality to provide an exponential bound on the tail probabilities.

$$P(X - \mu \ge t) = P(\exp(\lambda(X - \mu)) \ge \exp(\lambda t)), \quad \forall \lambda > 0.$$

$$\le \exp(-\lambda t) \cdot \mathbb{E}[\exp(\lambda(X - \mu))], \quad \lambda \in [-b, b].$$

Let $\phi(\lambda) \equiv \mathbb{E}[\exp(\lambda(X-\mu))]$, this leads to:

$$P(X - \mu \ge t) \le \exp(-\lambda t) \cdot \phi(\lambda), \quad \forall \lambda \in [0, b]$$
$$\implies P(X - \mu \ge t) \le \inf_{\lambda \in [0, b]} \exp(-\lambda t) \cdot \phi(\lambda).$$

5.2 Subgaussian

5.2.1 Definition

A random variable X, subject to $\mathbb{E}[\exp(\lambda(X-\mu))] \le \exp(\frac{\lambda^2 \sigma^2}{2})$ for all $\lambda \in \mathbb{R}$.

(1) Subgaussian with Chernoff bound.

$$P(X - \mu \ge t) \le \inf_{\lambda > 0} \exp(-\lambda t) \Phi(\lambda) \le \inf_{\lambda > 0} \exp(\frac{1}{2}\sigma^2 \lambda^2 - \lambda t).$$

where $\lambda = \frac{t}{\sigma^2}$, then we have

$$P(X - \mu \ge t) \le \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

If X is subgaussian, then -X is also subgaussian.

$$P(-X - (-\mu) \ge t) = \mathbb{P}(X - \mu \le -t) \le \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

Therefore,

$$P(|X - \mu| \ge t) \le 2 \cdot \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

(2) Any bounded random variable is subgaussian.

Proof. Let $X \in [a, b]$ almost surely. Then

$$\mathbb{E}[\exp(\lambda(X-\mu))] = \mathbb{E}_X \exp(\lambda(X-\mathbb{E}[X'])),$$

$$\leq \mathbb{E}_X \mathbb{E}'_X \exp(\lambda(X-X')),$$

$$= \mathbb{E}_X \mathbb{E}'_X \left[\mathbb{E}_\epsilon \exp(\lambda(X-X') \cdot \epsilon)\right].$$

 ϵ is a Rademacher random variable, meaning $\epsilon = \{1 \text{ with probability } \frac{1}{2}, -1 \text{ with probability } \frac{1}{2}\},\$ thus we have

$$\mathbb{E}_{\epsilon} \exp(\lambda \cdot (X - X') \cdot \epsilon) = \frac{1}{2} \exp(\lambda \cdot (X - X')) + \frac{1}{2} \exp(\lambda \cdot (X' - X)),$$
$$\leq \exp\left(\frac{1}{2}\lambda^2 \cdot (X - X')^2\right).$$

Thus we have

$$\mathbb{E}[\exp(\lambda(X-\mu))] \le \mathbb{E}_X \mathbb{E}'_X \exp\left(\frac{1}{2}\lambda^2(X-X')^2\right)$$
$$\le \exp\left(\frac{1}{2}\lambda^2(b-a)^2\right).$$

Hence X is subgaussian with $\sigma^2 = (b-a)^2$.

(3) Additivity of Subgaussian.

Let X_i be subgaussian, i.e. $X_i \sim \text{SubG}(\sigma_i^2)$, then $\sum X_i$ is also subgaussian given X_i 's are independent, and $\sum X_i \sim \text{SubG}(\sum \sigma_i^2)$.

We can further derive the Hoeffding bound:

$$P\left(\sum(X_i - \mu) \ge t\right) \le \exp\left(-\frac{t^2}{2\sum\sigma_i^2}\right)$$

(4) If we know P(|X| > t), then we can have:

$$\mathbb{E}[|X|^k] = \int_0^\infty P(|X|^k > t) \, dt \le \int_0^\infty 2 \cdot \exp\left(-\frac{t^{2/k}}{2\sigma^2}\right) dt.$$

by using the bound for P(|X| > t):

$$P(|X| > t) \le 2 \cdot \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

We can get:

$$\mathbb{E}[|X|^k] \approx \left(2\sigma^2\right)^{\frac{k}{2}} \cdot k \cdot \Gamma\left(\frac{k}{2}\right) = \mathcal{O}\left(\sigma^k\right).$$

5.2.2 $f(X) - \mathbb{E}f(X)$

Let $f(X) \equiv f(X_1, X_2, \dots, X_n)$, if f has a bounded difference, $f(X) - \mathbb{E}f(X)$ will be subgaussian.

(1) Doob construction. Construct a martingale with f(X) and $X_{1:n}$.

$$Y_k = \mathbb{E}[f(X)|F_k], \quad \mathcal{F}_k = \sigma(X_1, \dots, X_k)$$

Definition of martingale:

$$\mathbb{E}[Y_{k+1}|\mathcal{F}_k] = Y_k.$$

Which can be derived as follows:

$$\mathbb{E}[Y_{k+1}|\mathcal{F}_k] = \mathbb{E}[\mathbb{E}[f(X)|\mathcal{F}_{k+1}]|\mathcal{F}_k] \stackrel{\text{Tower property}}{=} \mathbb{E}[f(X)|\mathcal{F}_k] \equiv Y_k.$$

Let

$$D_k = Y_k - Y_{k-1},$$

then

$$\mathbb{E}[D_{k+1}|\mathcal{F}_k] = \mathbb{E}[Y_{k+1} - Y_k|\mathcal{F}_k] = 0$$

finally,

$$Y_n - Y_0 = f(X) - \mathbb{E}[f(X)] = \sum_{i=1}^n D_k.$$

(2) Azuma-Hoeffding. For $D_k \in [a_k, b_k]$, $\sum_{k=1}^n D_k$ is subG.

Proof.

$$\mathbb{E}[\exp(\lambda \sum_{k=1}^{n} \cdot D_k) = \mathbb{E}[\mathbb{E}[\exp(\lambda \cdot \sum_{k=1}^{n} D_k) \cdot \exp(\lambda D_n | \mathcal{F}_{n-1})]].$$

and we have

$$\mathbb{E}[\exp(\lambda \sum_{k=1}^{n} D_k)] = \mathbb{E}[\exp(\lambda \cdot \sum_{k=1}^{n-1} D_K)] \cdot \mathbb{E}[\exp(\lambda D_n) | \mathcal{F}_{n-1}]$$

since $D_k | \mathcal{F}_{k-1}$ bdd is subG, we have

$$\mathbb{E}[\exp(\lambda D_k)|\mathcal{F}_{k-1}] \le \exp(\frac{\lambda^2(b_k - a_k)^2}{8})$$

then

$$\mathbb{E}[\exp(\lambda \sum_{k=1}^{n} \cdot D_k) \le \mathbb{E}[\exp(\lambda \cdot \sum_{k=1}^{n-1} D_K)] \cdot \exp(\frac{\lambda^2 (b_k - a_k)^2}{8}) \le \exp(\frac{\lambda^2}{8} \sum_{k=1}^{n} (b_k - a_k)^2)$$

thus $\sum D_k$ is subG with $\sigma^2 = \frac{1}{4} \sum_{k=1}^n (b_k - a_k)^2$.

(3) Bounded Difference Inequality.

 $\mathbf{i}\mathbf{f}$

$$|f(\mathbf{x}) - f(\mathbf{x}_{k})| \le L_{k}.$$

 $\forall x, x_{k}^{'}$

Here

$$\mathbf{x}_{k}^{'} = \begin{cases} x_{k}^{'}, & \text{if } x_{k} = x_{k}^{'}, \\ x_{j}, & \text{if } x_{k} \neq x_{k}^{'}, \end{cases}$$

Define $\sum D_k = f(\mathbf{x}) - \mathbb{E}f(\mathbf{x})$, we have $\sum D_k$ is subG.

Proof. Using Azuma-Hoeffding inequality to show D_k is bounded: Let

$$D_k = Y_k - Y_{k-1},$$

$$A_k = \inf_x \mathbb{E}[f(\mathbf{x}) \mid \mathbf{X}_{1 \sim k-1}, \mathbf{X}_k = x] - Y_{k-1},$$

$$B_k = \sup_x \mathbb{E}[f(\mathbf{x}) \mid \mathbf{X}_{1 \sim k-1}, \mathbf{X}_k = x] - Y_{k-1}.$$

Then we have

$$A_k \le D_k \le B_k,$$

$$B_k - A_k \le \sup_{x,y} \mathbb{E}[f(\mathbf{X})_{1 \sim k-1}, x, \mathbf{X}_{k+1 \sim n})] - \mathbb{E}[f(\mathbf{X})_{1 \sim k-1}, y, \mathbf{X}_{k+1 \sim n})] \le \sup_{x,y} L_k = L_k.$$

So that D_k is bdd.

By Azuma-Hoeffding inequality, we have $\sum D_k$ is subG, which completes the proof.

(4) Rademacher complexity: the complexity of a vector collection \mathcal{A} :

$$\left\{ \begin{bmatrix} cf(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}, \begin{bmatrix} cf'(X_1) \\ \vdots \\ f'(X_n) \end{bmatrix}, \ldots \right\}, \text{ where } f \in \mathcal{F} \Rightarrow \text{ all the models.}$$

Assume that ε is a Rademacher vector, we have

$$\mathbb{E}_{\varepsilon}Z(\mathcal{A}) = \mathbb{E} \sup_{a \in \mathcal{A}} \langle a, \varepsilon \rangle.$$

Define $\varepsilon \to \varepsilon'^k$ as the k-th element of $\varepsilon'^k \neq \varepsilon_k$ and $f(\varepsilon)$ as $Z(\mathcal{A})$, we have $f(\varepsilon) - f(\varepsilon'^k)$ has bounded difference.

Proof. Since

$$f(\varepsilon'^{k}) = \sup_{a \in \mathcal{A}} \langle a, \varepsilon'^{k} \rangle \ge \langle a, \varepsilon'^{k} \rangle, \forall a \in \mathcal{A}.$$

Which can be transferred to:

$$\langle a, \varepsilon \rangle - f(\varepsilon'^k) \le \langle a, \varepsilon - \varepsilon'^k \rangle, \forall a \in \mathcal{A}$$

And we have

$$\sup_{a} \langle a, \varepsilon \rangle - f(\varepsilon'^{k}) \le \sup_{a} \langle a, \varepsilon - \varepsilon'^{k} \rangle.$$

So, finally, we have

$$f(\varepsilon) - f(\varepsilon'^k) \le \sup_a 2 \cdot |a_k| =: L_k$$

which completes the proof.

(5) Maximal Inequality: (worst case won't happen w.h.p.)

$$\frac{1}{n}\sum z_i \to \infty \Rightarrow \text{w.h.p } \left|\frac{1}{n}\sum z_i\right| \le t.$$

Given $X_{i\sim N}$ not i.i.d. but $\mathbb{E}\left[\max_{i} X_{i}\right]$ is sub-G(δ^{2})

(1)
$$\mathbb{E}[\max_{i} X_{i}] = \frac{1}{s} \mathbb{E}\left[\log\left(\exp\left(s \cdot \max_{i} X_{i}\right)\right)\right], \quad \forall s > 0$$
$$\leq \frac{1}{s} \log\left(\mathbb{E}\left[\exp\left(s \cdot \max_{i} X_{i}\right)\right]\right)$$
$$= \frac{1}{s} \log\left(\mathbb{E}\left[\max_{i} \exp\left(s \cdot X_{i}\right)\right]\right)$$
$$\leq \frac{1}{s} \log\left(\mathbb{E}\left[\sum_{i} \exp\left(s \cdot X_{i}\right)\right]\right)$$
$$= \frac{1}{s} \log\left(\sum_{i} \exp\left(\frac{\delta^{2} s^{2}}{2}\right)\right)$$
$$= \frac{1}{s} \log N + \frac{\delta^{2}}{2}S, \quad \forall s > 0$$
$$\Rightarrow LHS \leq \inf_{s>0} RHS = \delta \cdot \sqrt{2 \log N}.$$

(2)
$$\mathbf{P}(\max_{i} X_{i} > t) = \mathbf{P}\left(\bigcup_{i} (X_{i} > t)\right)$$
$$\leq \sum_{i} \mathbf{P}(X_{i} > t) = N \cdot \exp\left(-\frac{t^{2}}{2\delta^{2}}\right).$$
$$\Rightarrow N \cdot \exp\left(-\frac{t^{2}}{2\delta^{2}}\right) \leq \varepsilon \Rightarrow t = O\left(\delta \cdot \sqrt{\log\frac{N}{\varepsilon}}\right).$$
(3)
$$\mathbb{E}\left[\max_{i} |X_{i}|\right] = \mathbb{E}\left[\max_{i \in [N]} \max\left\{X_{i}, -X_{i}\right\}\right] \leq \delta \cdot \sqrt{2\log(2N)}.$$

(4)
$$\mathbf{P}(\max_{i} |X_{i}| > t) \le 2N \cdot \exp\left(-\frac{t^{2}}{2\delta^{2}}\right).$$

6 HW: Proof Thm 1.9. of Chapter 1.

$$\mathbb{E}\left[\max_{\Theta\in\mathcal{B}_2}\Theta X\right] \le 4\delta\sqrt{d}.$$