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2.1 Matrix derivation

Matrix derivation refers to the process of computing the derivative of one matrix with respect to
another matrix, or the derivative of a scalar function to a matrix. In this section, we study the latter
with the matrix X ∈ Rm×n, and the scalar function f(X) ∈ R. The derivative of f(X) to X can be
defined using element-wise derivation:

∂f

∂X
=

[
∂f

∂Xij

]
(2.1)

Computing element-wise derivation is difficult, and we consider scalar derivation where the deriva-
tive is defined using differential:

df = f ′(x)dx

where df is the differential, f ′(x) is the derivative. Similarly, we can write the derivative of scalar to
matrix using total differential formula:

df =

m∑
i=1

n∑
j=1

∂f

∂Xi,j
dXi,j = Tr

[
∂f

∂X

T

dX

]
=

〈
∂f

∂X
, dX

〉
(2.2)

where Tr(·) represents matrix trace, which is the sum of the diagonal elements of a square matrix,
and satisfies the property: for matrices A and B, Tr(ATB) =

∑
i,j AijBij , i.e., Tr(A

TB) is the inner
product of matrices A and B. Now we can use differential to compute derivative, we first build rules
for basic differential operations.

2.1.1 Differential formulas

1. d(X + Y ) = dX + dY (Addition)

2. d(XY ) = dX · Y +X · dY (Multiplication)

3. dX−1 = −X−1dXX−1 (Inverse)
This formula can be proven using dXX−1 = dI

4. d(X ⊙ Y ) = dX ⊙ Y +X ⊙ dY , (Element-wise multiplication)
where ⊙ represents element-wise multiplication of matrices X and Y of the same size.

5. dσ(X) = σ′(X)⊙ dX,σ(X) = [σ(Xij)], (Element-wise function)
where σ(X) = [σ(Xij)] represents element-wise function, σ′(X) = [σ′(Xij)] represents element-
wise derivative.

eg. For matrix X =

[
X11 X12

X21 X22

]
,

d sin (X) = d

[
sinX11 sinX12

sinX21 sinX22

]
=

[
cosX11dX11 cosX12dX12

cosX21dX21 cosX22dX22

]
= cos (X)⊙ dX

2-1
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Suppose the scalar function f(X) is formed through operations such as addition, subtraction, multi-
plication, inversion, and element-wise functions on the matrix X. In that case, we can use the above
formulas to transform df into dX. Then we apply trace on df to obtain ∂f

∂X based on Equation Equa-
tion (2.2). To accomplish this, we need some trace tricks.

2.1.2 Trace tricks

1. If a ∈ Rn×1,B ∈ Rn×n,
aTBa = Tr(aTBa) = Tr(aaTB) (2.3)

aTBa =
∑n

j=1 aj1
∑n

i=1 ai1bij = Tr(aTBa) = Tr(aaTB)

2. If A,B,C ∈ Rm×m,
Tr
(
AT (B ⊙C)

)
= Tr

[
(A⊙B)TC)

]
(2.4)

Tr
(
AT (B ⊙C)

)
=
∑m

i=1

∑m
j=1 aijbijcij = Tr

[
(A⊙B)TC)

]
Now the basic operation rules are prepared, to compute complex function derivative, we have one

more topic to cover – composite function derivative.

2.1.3 Composite function derivative

If Y is a function of X and ∂f
∂Y is known, we want to compute ∂f

∂X using composite function derivative.

In scalar derivation, we use the chain rule to compute ∂f
∂X . But in matrix derivation, the derivative

between two matrices ∂Y
∂X is undefined yet. However, we can still use the same differential operations

rules to transform dY into dX. In this way, it is natural to derive the derivative ∂f
∂X . For example,

if Y = AXB, we get for df ,

df = Tr

[
∂f

∂Y

T

dY

]
= Tr

[
∂f

∂Y

T

AdXB

]
= Tr

[
B

∂f

∂Y

T

AdX

]
Compare with Equation (2.2), we obtain the derivative of f to X as,

∂f

∂X
= AT ∂f

∂Y
BT

Next, we take the above methods into practice.

2.1.4 Example: logistic regression

In logistic regression, y ∈ Rk×1 is a one-hot vector acting as label for input x ∈ Rn×1, the weight
matrix is W ∈ Rk×n. We define a probability vector p ∈ Rk×1, with pi representing the probability
of x belonging to category i. The maximum likelihood form of logistic regression can be expressed as:

L = max
pi

k∏
i=1

pyii

where yi is the i-th element of y, pi is the i-th element of p.
Next, we want to transform

∏
into

∑
using the log trick:

− logL = min
pi

(
−

k∑
i=1

yi log pi

)

where log represents the natural logarithm.
Therefore, we define the loss function of logistic regression as:

l(x;W ) = −yT log softmax(Wx)︸ ︷︷ ︸
p

(2.5)
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To optimize l, we need to compute the derivative of l to W . To simplify notations, we can view
Wx as a new variable a, and Equation (2.5) transforms to:

l(x;W ) = − log softmax(xTW T )y = − log softmax(aT )y,

recall that softmax(a) = exp (a)

1T
k exp (a)

, where 1k is a k-dimensional all-ones vector, then we get for l(x;W ),

l(x;W ) = − log

[
exp(aT )

exp(aT )1k

]
y

= − log
[
exp(aT )

]
y + log

[
exp(aT )1k

]
1Tk y log(u/c) = log(u)− 1 log(c)

= −yTa+ log
[
exp(aT )1k

]
yT1 = 1

Then, we differentiate both sides of the equation,

dl = −yTda+
1

exp(aT )1k

[
d exp(aT )

]
1k

= −yTda+
1

exp(aT )1k

[
exp(aT )⊙ daT1k

]
dσ(a) = σ′(a)⊙ da

According to Equation (2.2), we apply the trace operator to both sides of the equation,

dl = Tr

(
−yTda+

1

exp(aT )1k
exp(aT )(da⊙ 1k)

)
= Tr

(
−yTda+

exp(aT )

exp(aT )1k
da

)
= Tr

(
−
[
yT + softmax(aT )

]
da
)

Therefore,
∂l

∂a
= −y + softmax(a)

Then we apply composite function derivative rules on a,

dl = Tr

(
∂l

∂a

T

da

)
= Tr

(
∂l

∂a

T

dWx

)
= Tr

(
x
∂l

∂a

T

dW

)
Therefore,

∂l

∂W
=

∂l

∂a
xT = −yxT + softmax(a)xT

2.2 Numerical analysis

2.2.1 Norm

Norm maps a vector into a scalar ”magnitude”: f(x) : Rn → R+
0 , often written as ∥x∥. A function

∥x∥ : Rn → R+
0 is called a norm if and only if it satisfies the following conditions:

1. ∥x∥ = 0 ⇐⇒ x = 0

2. ∥αx∥ = |α|∥x∥

3. ∥x∥ ≥ 0

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥
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A specific norm is determined with a parameter p, referred to as p-norm. If we have x ∈ Rn×1,
the p-norm of x is defined as:

∥x∥pp :=
n∑
i

|xi|p (2.6)

when p = ∞,

∥x∥∞ = max
i

|xi| (2.7)

The ∞-norm of a vector is the maximum absolute value of its elements.
when p = 0,

∥x∥0 =
n∑

i=1

1{xi ̸= 0} (2.8)

where 1{·} is an indicator function. The 0-norm counts the number of non-zero elements in the vector.

Further, we discuss matrix norm. We begin with the Frobenius norm, if we have A ∈ Rm×n, the
Frobenius norm of A is:

∥A∥2F =
n∑

j=1

m∑
i=1

a2ij = ∥Vec(A)∥2 (2.9)

where the m×n matrix A can be viewed as the vector obtained by concatenating together the columns
of A, and the Frobenius norm can be viewed as applying the 2-norm on this new vector.

Next we introduce the operator norm. If X and Y are two vector spaces with norm ∥x∥p and
∥y∥q, respectively. A is the matrix that maps X to Y, A : X → Y. Operator norm ∥A∥pq is induced
by vector norm:

∥A∥pq := inf {C ≥ 0 | ∥Ax∥q ≤ C∥x∥p,∀x ∈ X} (2.10)

In this definition, ∥A∥pq is the maximum scaling factor that transforms the norm of vector x in space
X to the norm of Ax in space Y. The relative scaling effect of A on x is not influenced by the norm
of x. Therefore, if we simply consider the situation where ∥x∥p = 1, we can get for ∥A∥pq,

∥A∥pq = max
∥x∥p=1

∥Ax∥q (2.11)

Taking p = q = 2, we have the following inequality,

∥Ax∥2 ≤ ∥A∥2∥x∥2,∀x ∈ X (2.12)

On the unit sphere in the vector space, the norm of x equals 1,

∥Ax∥2 ≤ ∥A∥2,∀∥x∥2 = 1,x ∈ X

2.2.2 Conditioning

Conditioning refers to a measure of sensitivity of a function’s output to input perturbations, often
affecting the numerical stability and accuracy of computations. Relative condition number is defined
as the maximum ratio of the relative error in the output of a function to the relative perturbation
in the input. If we have an input vector x ∈ Rn×1 and a perturbation vector h ∈ Rn×1, we give the
definition of condition number on function f(·) of x as:

κ(f ;x,h) =
|f(x+ h)− f(x)| / |f(x)|

∥h∥/∥x∥
κ(f) := lim

ϵ→0
max

x,∥h∥≤ϵ∥x∥
κ(f ;x,h)

(2.13)

where the norm of h is controlled by ∥x∥.
Concisely, we will simply refer to the relative condition number as the condition number in the following
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analysis.
Consider matrix transformation of x, if A ∈ Rm×n and y = f(x) = Ax, then we have:{

y = Ax
y + δy = A(x+ δx)

Taking the norm of δy, we have,

∥δy∥ = ∥Aδx∥ ≤ ∥A∥∥δx∥

We consider three cases,
– If A is a square matrix and the inverse of A exists, we have

x = A−1y ⇒ ∥x∥ ≤ ∥A−1∥∥y∥ ⇒ 1

∥y∥
≤ ∥A−1∥ 1

∥x∥

Multiplying this inequality with the above inequality of ∥δy∥, we get,

∥δy∥
∥y∥

≤ ∥A∥∥A−1∥∥δx∥
x

Based on Equation (2.13), we can compute the condition number of matrix A as:

κ(f) = κ(A) = lim
δx→0

max
x,δx

∥δy∥/∥y∥
∥δx∥/∥x∥

= ∥A∥∥A−1∥ (2.14)

– If m < n, consider the situation that x ⊥ A, which means that the n-dim vector x is perpendicular
to m row vectors in A. In this case, ∥y∥ = 0, and the condition number is:

κ(A) = lim
δx→0

max
x,δx

∥δy∥/∥y∥
∥δx∥/∥x∥

= ∞ (2.15)

– If m > n, then
x = A+Ax = A+y ⇒ ∥x∥ = ∥A+y∥ ≤ ∥A+∥∥y∥

where A+A = I.

κ(A) = lim
δx→0

max
x,δx

∥δy∥/∥y∥
∥δx∥/∥x∥

= ∥A∥∥A+∥ (2.16)

To compute A+, we can use singular value decomposition (SVD) on A.
Intuitively, if A’s rank r = n and A is a square matrix, the equation y = Ax has only one solution,

and the condition number can be expressed using A−1. If r < n, we refer to the equation y = Ax as
underdetermined, there are infinite solutions for this equation. If r = n and A is not a square matrix,
we refer to the equation y = Ax as overdetermined, there’s no solution to the equation, but we can
use the least square method to compute the approximate solution.

2.3 Orthogonal matrices

Orthogonal matrices are square matrices whose rows and columns are orthonormal vectors, the trans-
pose of an orthogonal matrix equals its inverse, we define orthogonal matrices as:

QT ≡ Q−1 (2.17)

We can compute the norm of an orthogonal matrix:

∥Q∥2 = max
∥x∥=1

∥Qx∥2

= max
∥x∥=1

xTQTQx = 1
(2.18)

where QTQ = 1.
Similarly, we can derive the norm of the inverse of an orthogonal matrix:

∥Q−1∥ = max
∥x∥=1

∥Q−1x∥ = max
∥x∥=1

∥QTx∥ = maxxTQQTx = 1 (2.19)
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2.4 Singular value decomposition

SVD factorizes any matrix into three matrices consisting of two orthogonal matrices and a diagonal
matrix of singular values. For matrix A ∈ Rn×m,

A = UΣV T (2.20)

where U and V are two orthogonal matrices, the columns of U are referred to as left singular vectors
of A, the columns of V are referred to as right singular vectors of A, Σ is a diagonal matrix whose
diagonal elements are the singular values of matrix A.

The rank of A satisfies r ≤ min(n,m), then

A = Un×rΣr×r(V
T )r×m =

r∑
i=1

siuiv
T
i (2.21)

where si is the i-th element in the diagonal of Σ, also the i-th singular value of A, ui is the i-th
column vector in U and vi is the i-th column vector in V .
This equation indicates that a matrix is the summation of the multiplication of its singular values
and corresponding singular vectors. In some cases, we only need the first (max) k singular values
and singular vectors to express A and eliminate the influence of dimensions with lower singular value,
truncated SVD can be expressed as:

Ã =
k∑

i=1

siuiv
T
i (2.22)

Next, we examine the norm of A from SVD perspective,

∥A∥ ≤ ∥U∥∥Σ∥∥V T ∥ = ∥Σ∥ = σmax

where ∥U∥ = ∥V ∥ = 1.
Similarly, Σ can be expressed using A,

Σ = UTUΣV TV = UTAV

The norm of Σ satisfies the following inequality,

∥Σ∥ ≤ ∥UT ∥∥A∥∥V ∥ = ∥A∥

Therefore,

∥A∥ = ∥Σ∥ = σmax (2.23)

This equation indicates that a matrix’s norm equals its maximum singular value.

Now we consider the situation of ATA, ATA can be expressed using the SVD form of A:

ATA = V ΣUTUΣV T = V Σ2V T (2.24)

where UTU = 1.
This equation shows that the diagonal elements in Σ2 are eigenvalues of ATA.

Using SVD, the pesudomatrix of A can be defined as:

A+ = Vm×rΣ
−1
r×r(U

T )r×n (2.25)

Similar to ∥A∥, we can derive the norm of A+ as:

∥A+∥ =
1

σmin
(2.26)
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2.5 Positive semi-definite

A matrix is positive semi-definite (PSD) if any quadratic form it defines yields no negative values.

xTAx ≥ 0,∀x (2.27)

PSD matrices are real symmetric matrices with non-negative eigenvalues. For a PSD matrix A, it can
be factorized using eigenvalue decomposition:

A = UΣUT (2.28)

where U is an orthogonal matrix, and Σ is a diagonal matrix with diagonal elements being eigenvalues
of A.

In the attention mechanism, we have query matrix Q and key matrix K, the similarity between Q
andK is often defined as the inner products ofQ andK through the exponential function, exp(QKT ).
If we consider a matrix X composed of Q and K:

X =

[
Q
K

]
Then the matrix exp(XXT ) is a PSD matrix with exp(QKT ) as its right upper component,

exp(XXT ) = exp

([
QQT QKT

KQT KKT

])

2.6 Revisit linear regression

Recall that the optimization objective of a linear regression model can be described as the equation
below:

β∗ = argmin
β

< Xβ − Y ,Xβ − Y > (2.29)

we make the inner product term as a function f(β), then take the first derivative of the square loss
using matrix derivative rules,

∂f

∂β
= 0 ⇒ XTXβ̂ = XTY (2.30)

If XTX is invertible, we can derive the closed-form solution of β̂,

β̂ = (XTX)−1XTY (2.31)

The numerical stability of (XTX)−1 is dependent on XTX. Based on Equation (2.14), we compute
the condition number of XTX as

κ(XTX) = ∥X∥2∥X+∥2 (2.32)

Using QR factorization X = QR, where Q is an orthogonal matrix and R is an upper triangular
matrix. Then we have,

XTXβ̂ = XTY ⇒ RTQTQRβ̂ = RTQTY

⇒ QTQRβ̂ = QTY

⇒ Rβ̂ = QTY

⇒ β̂ = R−1QTY

κ(R) = κ(Q−1X) = κ(X) = ∥X∥∥X+∥ (2.33)

Using Equation (2.23) and Equation (2.26), the condition number can be further expressed as

κ(XTX) = κ(V Σ2V T ) = κ(Σ2) =
σ2
max

σ2
min

(2.34)
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Revisit the variance of β̂,
Var(β̂) = σ2(XTX)−1 (2.35)

If we fix the norm of X as 1, then the maximum eigenvalue σmax equals to 1. Condition number of
XTX can be written as:

κ(XTX) =
1

σ2
min

Taking the norm of variance on β̂, we can have for ∥Var(β̂)∥,

∥Var(β̂)∥ = ∥σ2(XTX)−1∥ =
σ2

σ2
min

In this case, if the smallest eigenvalue of X is close to 0, the colinearity between variables is relatively
large, which is also reflected in the condition number and the estimation variance.


