Lecture 2: Numerical Analysis
Instructor: Yifan Chen
Scribes: Yifan Xu
Proof reader: Yifan Chen

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Matrix derivation

Matrix derivation refers to the process of computing the derivative of one matrix with respect to another matrix, or the derivative of a scalar function to a matrix. In this section, we study the latter with the matrix $\boldsymbol{X} \in \mathbb{R}^{m \times n}$, and the scalar function $f(\boldsymbol{X}) \in \mathbb{R}$. The derivative of $f(\boldsymbol{X})$ to \boldsymbol{X} can be defined using element-wise derivation:

$$
\begin{equation*}
\frac{\partial f}{\partial \boldsymbol{X}}=\left[\frac{\partial f}{\partial \boldsymbol{X}_{i j}}\right] \tag{2.1}
\end{equation*}
$$

Computing element-wise derivation is difficult, and we consider scalar derivation where the derivative is defined using differential:

$$
\mathrm{d} f=f^{\prime}(x) \mathrm{d} x
$$

where $\mathrm{d} f$ is the differential, $f^{\prime}(x)$ is the derivative. Similarly, we can write the derivative of scalar to matrix using total differential formula:

$$
\begin{equation*}
\mathrm{d} f=\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial f}{\partial \boldsymbol{X}_{i, j}} \mathrm{~d} \boldsymbol{X}_{i, j}=\operatorname{Tr}\left[{\frac{\partial f}{}{ }^{T}}^{\partial \boldsymbol{X}} \mathrm{d} \boldsymbol{X}\right]=\left\langle\frac{\partial f}{\partial \boldsymbol{X}}, \mathrm{~d} \boldsymbol{X}\right\rangle \tag{2.2}
\end{equation*}
$$

where $\operatorname{Tr}(\cdot)$ represents matrix trace, which is the sum of the diagonal elements of a square matrix, and satisfies the property: for matrices \boldsymbol{A} and $\boldsymbol{B}, \operatorname{Tr}\left(\boldsymbol{A}^{T} \boldsymbol{B}\right)=\sum_{i, j} \boldsymbol{A}_{i j} \boldsymbol{B}_{i j}$, i.e., $\operatorname{Tr}\left(\boldsymbol{A}^{T} \boldsymbol{B}\right)$ is the inner product of matrices \boldsymbol{A} and \boldsymbol{B}. Now we can use differential to compute derivative, we first build rules for basic differential operations.

2.1.1 Differential formulas

1. $\mathrm{d}(\boldsymbol{X}+\boldsymbol{Y})=\mathrm{d} \boldsymbol{X}+\mathrm{d} \boldsymbol{Y}$ (Addition)
2. $\mathrm{d}(\boldsymbol{X} \boldsymbol{Y})=\mathrm{d} \boldsymbol{X} \cdot \boldsymbol{Y}+\boldsymbol{X} \cdot \mathrm{d} \boldsymbol{Y}$ (Multiplication)
3. $\mathrm{d} \boldsymbol{X}^{-1}=-\boldsymbol{X}^{-1} \mathrm{~d} \boldsymbol{X} \boldsymbol{X}^{-1}$ (Inverse)

This formula can be proven using $\mathrm{d} \boldsymbol{X} \boldsymbol{X}^{-1}=\mathrm{d} \boldsymbol{I}$
4. $\mathrm{d}(\boldsymbol{X} \odot \boldsymbol{Y})=\mathrm{d} \boldsymbol{X} \odot \boldsymbol{Y}+\boldsymbol{X} \odot \mathrm{d} \boldsymbol{Y}$, (Element-wise multiplication)
where \odot represents element-wise multiplication of matrices \boldsymbol{X} and \boldsymbol{Y} of the same size.
5. $\mathrm{d} \sigma(\boldsymbol{X})=\sigma^{\prime}(\boldsymbol{X}) \odot \mathrm{d} \boldsymbol{X}, \sigma(\boldsymbol{X})=\left[\sigma\left(\boldsymbol{X}_{i j}\right)\right]$, (Element-wise function)
where $\sigma(\boldsymbol{X})=\left[\sigma\left(\boldsymbol{X}_{i j}\right)\right]$ represents element-wise function, $\sigma^{\prime}(\boldsymbol{X})=\left[\sigma^{\prime}\left(\boldsymbol{X}_{i j}\right)\right]$ represents elementwise derivative.
eg. For matrix $\boldsymbol{X}=\left[\begin{array}{ll}\boldsymbol{X}_{11} & \boldsymbol{X}_{12} \\ \boldsymbol{X}_{21} & \boldsymbol{X}_{22}\end{array}\right]$,

$$
\mathrm{d} \sin (\boldsymbol{X})=\mathrm{d}\left[\begin{array}{ll}
\sin \boldsymbol{X}_{11} & \sin \boldsymbol{X}_{12} \\
\sin \boldsymbol{X}_{21} & \sin \boldsymbol{X}_{22}
\end{array}\right]=\left[\begin{array}{cc}
\cos \boldsymbol{X}_{11} \mathrm{~d} \boldsymbol{X}_{11} & \cos \boldsymbol{X}_{12} \mathrm{~d} \boldsymbol{X}_{12} \\
\cos \boldsymbol{X}_{21} \mathrm{~d} \boldsymbol{X}_{21} & \cos \boldsymbol{X}_{22} \mathrm{~d} \boldsymbol{X}_{22}
\end{array}\right]=\cos (\boldsymbol{X}) \odot \mathrm{d} \boldsymbol{X}
$$

Suppose the scalar function $f(\boldsymbol{X})$ is formed through operations such as addition, subtraction, multiplication, inversion, and element-wise functions on the matrix \boldsymbol{X}. In that case, we can use the above formulas to transform $\mathrm{d} f$ into $\mathrm{d} \boldsymbol{X}$. Then we apply trace on $\mathrm{d} f$ to obtain $\frac{\partial f}{\partial \boldsymbol{X}}$ based on Equation Equation (2.2). To accomplish this, we need some trace tricks.

2.1.2 Trace tricks

1. If $\boldsymbol{a} \in \mathbb{R}^{n \times 1}, \boldsymbol{B} \in \mathbb{R}^{n \times n}$,

$$
\begin{equation*}
\boldsymbol{a}^{T} \boldsymbol{B} \boldsymbol{a}=\operatorname{Tr}\left(\boldsymbol{a}^{T} \boldsymbol{B} \boldsymbol{a}\right)=\operatorname{Tr}\left(\boldsymbol{a} \boldsymbol{a}^{T} \boldsymbol{B}\right) \tag{2.3}
\end{equation*}
$$

$$
\boldsymbol{a}^{T} \boldsymbol{B} \boldsymbol{a}=\sum_{j=1}^{n} a_{j 1} \sum_{i=1}^{n} a_{i 1} b_{i j}=\operatorname{Tr}\left(\boldsymbol{a}^{T} \boldsymbol{B} \boldsymbol{a}\right)=\operatorname{Tr}\left(\boldsymbol{a} \boldsymbol{a}^{T} \boldsymbol{B}\right)
$$

2. If $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{m \times m}$,

$$
\begin{equation*}
\left.\operatorname{Tr}\left(\boldsymbol{A}^{T}(\boldsymbol{B} \odot \boldsymbol{C})\right)=\operatorname{Tr}\left[(\boldsymbol{A} \odot \boldsymbol{B})^{T} \boldsymbol{C}\right)\right] \tag{2.4}
\end{equation*}
$$

$\left.\operatorname{Tr}\left(\boldsymbol{A}^{T}(\boldsymbol{B} \odot \boldsymbol{C})\right)=\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i j} b_{i j} c_{i j}=\operatorname{Tr}\left[(\boldsymbol{A} \odot \boldsymbol{B})^{T} \boldsymbol{C}\right)\right]$
Now the basic operation rules are prepared, to compute complex function derivative, we have one more topic to cover - composite function derivative.

2.1.3 Composite function derivative

If \boldsymbol{Y} is a function of \boldsymbol{X} and $\frac{\partial f}{\partial \boldsymbol{Y}}$ is known, we want to compute $\frac{\partial f}{\partial \boldsymbol{X}}$ using composite function derivative. In scalar derivation, we use the chain rule to compute $\frac{\partial f}{\partial \boldsymbol{X}}$. But in matrix derivation, the derivative between two matrices $\frac{\partial \boldsymbol{Y}}{\partial \boldsymbol{X}}$ is undefined yet. However, we can still use the same differential operations rules to transform $\mathrm{d} \boldsymbol{Y}$ into $\mathrm{d} \boldsymbol{X}$. In this way, it is natural to derive the derivative $\frac{\partial f}{\partial \boldsymbol{X}}$. For example, if $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}$, we get for $\mathrm{d} f$,

$$
\mathrm{d} f=\operatorname{Tr}\left[\frac{\partial f}{\partial \boldsymbol{Y}}^{T} \mathrm{~d} \boldsymbol{Y}\right]=\operatorname{Tr}\left[\frac{\partial f}{\partial \boldsymbol{Y}}^{T} \boldsymbol{A} \mathrm{~d} \boldsymbol{X} \boldsymbol{B}\right]=\operatorname{Tr}\left[\boldsymbol{B} \frac{\partial f}{\partial \boldsymbol{Y}}^{T} \boldsymbol{A} \mathrm{~d} \boldsymbol{X}\right]
$$

Compare with Equation (2.2), we obtain the derivative of f to \boldsymbol{X} as,

$$
\frac{\partial f}{\partial \boldsymbol{X}}=\boldsymbol{A}^{T} \frac{\partial f}{\partial \boldsymbol{Y}} \boldsymbol{B}^{T}
$$

Next, we take the above methods into practice.

2.1.4 Example: logistic regression

In logistic regression, $\boldsymbol{y} \in \mathbb{R}^{k \times 1}$ is a one-hot vector acting as label for input $\boldsymbol{x} \in \mathbb{R}^{n \times 1}$, the weight matrix is $\boldsymbol{W} \in \mathbb{R}^{k \times n}$. We define a probability vector $\boldsymbol{p} \in \mathbb{R}^{k \times 1}$, with p_{i} representing the probability of \boldsymbol{x} belonging to category i. The maximum likelihood form of logistic regression can be expressed as:

$$
\mathcal{L}=\max _{p_{i}} \prod_{i=1}^{k} p_{i}^{y_{i}}
$$

where y_{i} is the i-th element of \boldsymbol{y}, p_{i} is the i-th element of \boldsymbol{p}.
Next, we want to transform Π into \sum using the log trick:

$$
-\log \mathcal{L}=\min _{p_{i}}\left(-\sum_{i=1}^{k} y_{i} \log p_{i}\right)
$$

where \log represents the natural logarithm.
Therefore, we define the loss function of logistic regression as:

$$
\begin{equation*}
l(\boldsymbol{x} ; \boldsymbol{W})=-\boldsymbol{y}^{T} \log \underbrace{\operatorname{softmax}(\boldsymbol{W} \boldsymbol{x})}_{\boldsymbol{p}} \tag{2.5}
\end{equation*}
$$

To optimize l, we need to compute the derivative of l to \boldsymbol{W}. To simplify notations, we can view $\boldsymbol{W} \boldsymbol{x}$ as a new variable \boldsymbol{a}, and Equation (2.5) transforms to:

$$
l(\boldsymbol{x} ; \boldsymbol{W})=-\log \operatorname{softmax}\left(\boldsymbol{x}^{T} \boldsymbol{W}^{T}\right) \boldsymbol{y}=-\log \operatorname{softmax}\left(\boldsymbol{a}^{T}\right) \boldsymbol{y}
$$

recall that $\operatorname{softmax}(\boldsymbol{a})=\frac{\exp (\boldsymbol{a})}{\mathbf{1}_{k}^{T} \exp (\boldsymbol{a})}$, where $\mathbf{1}_{k}$ is a k-dimensional all-ones vector, then we get for $l(\boldsymbol{x} ; \boldsymbol{W})$,

$$
\begin{array}{rlr}
l(\boldsymbol{x} ; \boldsymbol{W}) & =-\log \left[\frac{\exp \left(\boldsymbol{a}^{T}\right)}{\exp \left(\boldsymbol{a}^{T}\right) \mathbf{1}_{k}}\right] \boldsymbol{y} \\
& =-\log \left[\exp \left(\boldsymbol{a}^{\boldsymbol{T}}\right)\right] \boldsymbol{y}+\log \left[\exp \left(\boldsymbol{a}^{T}\right) \mathbf{1}_{k}\right] \mathbf{1}_{k}^{T} \boldsymbol{y} & \log (\boldsymbol{u} / c)=\log (\boldsymbol{u})-\mathbf{1} \log (c) \\
& =-\boldsymbol{y}^{T} \boldsymbol{a}+\log \left[\exp \left(\boldsymbol{a}^{\boldsymbol{T}}\right) \mathbf{1}_{k}\right] & \boldsymbol{y}^{T} \mathbf{1}=1
\end{array}
$$

Then, we differentiate both sides of the equation,

$$
\begin{aligned}
\mathrm{d} l & =-\boldsymbol{y}^{T} \mathrm{~d} \boldsymbol{a}+\frac{1}{\exp \left(\boldsymbol{a}^{T}\right) \mathbf{1}_{k}}\left[\mathrm{~d} \exp \left(\boldsymbol{a}^{T}\right)\right] \mathbf{1}_{k} \\
& =-\boldsymbol{y}^{T} \mathrm{~d} \boldsymbol{a}+\frac{1}{\exp \left(\boldsymbol{a}^{T}\right) \mathbf{1}_{k}}\left[\exp \left(\boldsymbol{a}^{T}\right) \odot \mathrm{d} \boldsymbol{a}^{T} \mathbf{1}_{k}\right] \quad \mathrm{d} \sigma(\boldsymbol{a})=\sigma^{\prime}(\boldsymbol{a}) \odot \mathrm{d} \boldsymbol{a}
\end{aligned}
$$

According to Equation (2.2), we apply the trace operator to both sides of the equation,

$$
\begin{aligned}
\mathrm{d} l & =\operatorname{Tr}\left(-\boldsymbol{y}^{T} \mathrm{~d} \boldsymbol{a}+\frac{1}{\exp \left(\boldsymbol{a}^{T}\right) \mathbf{1}_{k}} \exp \left(\boldsymbol{a}^{T}\right)\left(\mathrm{d} \boldsymbol{a} \odot \mathbf{1}_{k}\right)\right) \\
& =\operatorname{Tr}\left(-\boldsymbol{y}^{T} \mathrm{~d} \boldsymbol{a}+\frac{\exp \left(\boldsymbol{a}^{T}\right)}{\exp \left(\boldsymbol{a}^{T}\right) \mathbf{1}_{k}} \mathrm{~d} \boldsymbol{a}\right) \\
& =\operatorname{Tr}\left(-\left[\boldsymbol{y}^{T}+\operatorname{softmax}\left(\boldsymbol{a}^{T}\right)\right] \mathrm{d} \boldsymbol{a}\right)
\end{aligned}
$$

Therefore,

$$
\frac{\partial l}{\partial \boldsymbol{a}}=-\boldsymbol{y}+\operatorname{softmax}(\boldsymbol{a})
$$

Then we apply composite function derivative rules on \boldsymbol{a},

$$
\mathrm{d} l=\operatorname{Tr}\left(\frac{\partial l}{\partial \boldsymbol{a}}^{T} \mathrm{~d} \boldsymbol{a}\right)=\operatorname{Tr}\left(\frac{\partial l}{\partial \boldsymbol{a}}^{T} \mathrm{~d} \boldsymbol{W} \boldsymbol{x}\right)=\operatorname{Tr}\left(\boldsymbol{x} \frac{\partial l}{\partial \boldsymbol{a}}^{T} \mathrm{~d} \boldsymbol{W}\right)
$$

Therefore,

$$
\frac{\partial l}{\partial \boldsymbol{W}}=\frac{\partial l}{\partial \boldsymbol{a}} \boldsymbol{x}^{T}=-\boldsymbol{y} \boldsymbol{x}^{T}+\operatorname{softmax}(\boldsymbol{a}) \boldsymbol{x}^{T}
$$

2.2 Numerical analysis

2.2.1 Norm

Norm maps a vector into a scalar "magnitude": $f(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}$, often written as $\|\boldsymbol{x}\|$. A function $\|\boldsymbol{x}\|: \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}$is called a norm if and only if it satisfies the following conditions:

1. $\|\boldsymbol{x}\|=0 \Longleftrightarrow \boldsymbol{x}=0$
2. $\|\alpha \boldsymbol{x}\|=|\alpha|\|\boldsymbol{x}\|$
3. $\|\boldsymbol{x}\| \geq 0$
4. $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$

A specific norm is determined with a parameter p, referred to as p-norm. If we have $\boldsymbol{x} \in \mathbb{R}^{n \times 1}$, the p-norm of \boldsymbol{x} is defined as:

$$
\begin{equation*}
\|\boldsymbol{x}\|_{p}^{p}:=\sum_{i}^{n}\left|x_{i}\right|^{p} \tag{2.6}
\end{equation*}
$$

when $p=\infty$,

$$
\begin{equation*}
\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right| \tag{2.7}
\end{equation*}
$$

The ∞-norm of a vector is the maximum absolute value of its elements. when $p=0$,

$$
\begin{equation*}
\|\boldsymbol{x}\|_{0}=\sum_{i=1}^{n} \mathbf{1}\left\{x_{i} \neq 0\right\} \tag{2.8}
\end{equation*}
$$

where $\mathbf{1}\{\cdot\}$ is an indicator function. The 0 -norm counts the number of non-zero elements in the vector.
Further, we discuss matrix norm. We begin with the Frobenius norm, if we have $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, the Frobenius norm of \boldsymbol{A} is:

$$
\begin{equation*}
\|\boldsymbol{A}\|_{F}^{2}=\sum_{j=1}^{n} \sum_{i=1}^{m} a_{i j}^{2}=\|\operatorname{Vec}(\boldsymbol{A})\|^{2} \tag{2.9}
\end{equation*}
$$

where the $m \times n$ matrix \boldsymbol{A} can be viewed as the vector obtained by concatenating together the columns of \boldsymbol{A}, and the Frobenius norm can be viewed as applying the 2 -norm on this new vector.

Next we introduce the operator norm. If \mathbf{X} and \mathbf{Y} are two vector spaces with norm $\|\boldsymbol{x}\|_{p}$ and $\|\boldsymbol{y}\|_{q}$, respectively. \boldsymbol{A} is the matrix that maps \mathbf{X} to $\mathbf{Y}, \boldsymbol{A}: \mathbf{X} \rightarrow \mathbf{Y}$. Operator norm $\|\boldsymbol{A}\|_{p q}$ is induced by vector norm:

$$
\begin{equation*}
\|\boldsymbol{A}\|_{p q}:=\inf \left\{C \geq 0 \mid\|\boldsymbol{A} \boldsymbol{x}\|_{q} \leq C\|\boldsymbol{x}\|_{p}, \forall \boldsymbol{x} \in \mathbf{X}\right\} \tag{2.10}
\end{equation*}
$$

In this definition, $\|\boldsymbol{A}\|_{p q}$ is the maximum scaling factor that transforms the norm of vector \boldsymbol{x} in space \mathbf{X} to the norm of $\boldsymbol{A} \boldsymbol{x}$ in space \mathbf{Y}. The relative scaling effect of \boldsymbol{A} on \boldsymbol{x} is not influenced by the norm of \boldsymbol{x}. Therefore, if we simply consider the situation where $\|\boldsymbol{x}\|_{p}=1$, we can get for $\|\boldsymbol{A}\|_{p q}$,

$$
\begin{equation*}
\|\boldsymbol{A}\|_{p q}=\max _{\|\boldsymbol{x}\|_{p}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{q} \tag{2.11}
\end{equation*}
$$

Taking $p=q=2$, we have the following inequality,

$$
\begin{equation*}
\|\boldsymbol{A} \boldsymbol{x}\|_{2} \leq\|\boldsymbol{A}\|_{2}\|\boldsymbol{x}\|_{2}, \forall \boldsymbol{x} \in \mathbf{X} \tag{2.12}
\end{equation*}
$$

On the unit sphere in the vector space, the norm of \boldsymbol{x} equals 1 ,

$$
\|\boldsymbol{A} \boldsymbol{x}\|_{2} \leq\|\boldsymbol{A}\|_{2}, \forall\|\boldsymbol{x}\|_{2}=1, \boldsymbol{x} \in \mathbf{X}
$$

2.2.2 Conditioning

Conditioning refers to a measure of sensitivity of a function's output to input perturbations, often affecting the numerical stability and accuracy of computations. Relative condition number is defined as the maximum ratio of the relative error in the output of a function to the relative perturbation in the input. If we have an input vector $\boldsymbol{x} \in \mathbb{R}^{n \times 1}$ and a perturbation vector $\boldsymbol{h} \in \mathbb{R}^{n \times 1}$, we give the definition of condition number on function $f(\cdot)$ of \boldsymbol{x} as:

$$
\begin{align*}
\kappa(f ; \boldsymbol{x}, \boldsymbol{h}) & =\frac{|f(\boldsymbol{x}+\boldsymbol{h})-f(\boldsymbol{x})| /|f(\boldsymbol{x})|}{\|\boldsymbol{h}\| /\|\boldsymbol{x}\|} \tag{2.13}\\
\kappa(f) & :=\lim _{\epsilon \rightarrow 0} \max _{\boldsymbol{x},\|\boldsymbol{h}\| \leq \epsilon\|\boldsymbol{x}\|} \kappa(f ; \boldsymbol{x}, \boldsymbol{h})
\end{align*}
$$

where the norm of \boldsymbol{h} is controlled by $\|\boldsymbol{x}\|$.
Concisely, we will simply refer to the relative condition number as the condition number in the following
analysis.
Consider matrix transformation of \boldsymbol{x}, if $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{y}=f(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}$, then we have:

$$
\left\{\begin{array}{l}
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \\
\boldsymbol{y}+\delta \boldsymbol{y}=\boldsymbol{A}(\boldsymbol{x}+\delta \boldsymbol{x})
\end{array}\right.
$$

Taking the norm of $\delta \boldsymbol{y}$, we have,

$$
\|\delta \boldsymbol{y}\|=\|\boldsymbol{A} \delta \boldsymbol{x}\| \leq\|\boldsymbol{A}\|\|\delta \boldsymbol{x}\|
$$

We consider three cases,

- If \boldsymbol{A} is a square matrix and the inverse of \boldsymbol{A} exists, we have

$$
\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{y} \Rightarrow\|\boldsymbol{x}\| \leq\left\|\boldsymbol{A}^{-1}\right\|\|\boldsymbol{y}\| \Rightarrow \frac{1}{\|\boldsymbol{y}\|} \leq\left\|\boldsymbol{A}^{-1}\right\| \frac{1}{\|\boldsymbol{x}\|}
$$

Multiplying this inequality with the above inequality of $\|\delta \boldsymbol{y}\|$, we get,

$$
\frac{\|\delta \boldsymbol{y}\|}{\|\boldsymbol{y}\|} \leq\|\boldsymbol{A}\|\left\|\boldsymbol{A}^{-1}\right\| \frac{\|\delta \boldsymbol{x}\|}{\boldsymbol{x}}
$$

Based on Equation (2.13), we can compute the condition number of matrix \boldsymbol{A} as:

$$
\begin{equation*}
\kappa(f)=\kappa(\boldsymbol{A})=\lim _{\delta \boldsymbol{x} \rightarrow 0} \max _{\boldsymbol{x}, \delta \boldsymbol{x}} \frac{\|\delta \boldsymbol{y}\| /\|\boldsymbol{y}\|}{\|\delta \boldsymbol{x}\| /\|\boldsymbol{x}\|}=\|\boldsymbol{A}\|\left\|\boldsymbol{A}^{-1}\right\| \tag{2.14}
\end{equation*}
$$

- If $m<n$, consider the situation that $\boldsymbol{x} \perp \boldsymbol{A}$, which means that the n-dim vector \boldsymbol{x} is perpendicular to m row vectors in \boldsymbol{A}. In this case, $\|\boldsymbol{y}\|=0$, and the condition number is:

$$
\begin{equation*}
\kappa(\boldsymbol{A})=\lim _{\delta \boldsymbol{x} \rightarrow 0} \max _{\boldsymbol{x}, \delta \boldsymbol{x}} \frac{\|\delta \boldsymbol{y}\| /\|\boldsymbol{y}\|}{\|\delta \boldsymbol{x}\| /\|\boldsymbol{x}\|}=\infty \tag{2.15}
\end{equation*}
$$

- If $m>n$, then

$$
\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{A x}=\boldsymbol{A}^{+} \boldsymbol{y} \Rightarrow\|\boldsymbol{x}\|=\left\|\boldsymbol{A}^{+} \boldsymbol{y}\right\| \leq\left\|\boldsymbol{A}^{+}\right\|\|y\|
$$

where $\boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{I}$.

$$
\begin{equation*}
\kappa(\boldsymbol{A})=\lim _{\delta x \rightarrow 0} \max _{\boldsymbol{x}, \delta \boldsymbol{x}} \frac{\|\delta \boldsymbol{x}\| /\|\boldsymbol{y}\|}{\|\delta \boldsymbol{x}\| /\|\boldsymbol{x}\|}=\|\boldsymbol{A}\|\left\|\boldsymbol{A}^{+}\right\| \tag{2.16}
\end{equation*}
$$

To compute \boldsymbol{A}^{+}, we can use singular value decomposition (SVD) on \boldsymbol{A}.
Intuitively, if \boldsymbol{A} 's rank $r=n$ and \boldsymbol{A} is a square matrix, the equation $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ has only one solution, and the condition number can be expressed using \boldsymbol{A}^{-1}. If $r<n$, we refer to the equation $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ as underdetermined, there are infinite solutions for this equation. If $r=n$ and \boldsymbol{A} is not a square matrix, we refer to the equation $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ as overdetermined, there's no solution to the equation, but we can use the least square method to compute the approximate solution.

2.3 Orthogonal matrices

Orthogonal matrices are square matrices whose rows and columns are orthonormal vectors, the transpose of an orthogonal matrix equals its inverse, we define orthogonal matrices as:

$$
\begin{equation*}
\boldsymbol{Q}^{T} \equiv \boldsymbol{Q}^{-1} \tag{2.17}
\end{equation*}
$$

We can compute the norm of an orthogonal matrix:

$$
\begin{align*}
\|\boldsymbol{Q}\|^{2} & =\max _{\|\boldsymbol{x}\|=1}\|\boldsymbol{Q} \boldsymbol{x}\|^{2} \\
& =\max _{\|\boldsymbol{x}\|=1} \boldsymbol{x}^{T} \boldsymbol{Q}^{T} \boldsymbol{Q} \boldsymbol{x}=1 \tag{2.18}
\end{align*}
$$

where $\boldsymbol{Q}^{T} \boldsymbol{Q}=1$.
Similarly, we can derive the norm of the inverse of an orthogonal matrix:

$$
\begin{equation*}
\left\|\boldsymbol{Q}^{-1}\right\|=\max _{\|\boldsymbol{x}\|=1}\left\|\boldsymbol{Q}^{-1} \boldsymbol{x}\right\|=\max _{\|\boldsymbol{x}\|=1}\left\|\boldsymbol{Q}^{T} \boldsymbol{x}\right\|=\max \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{Q}^{T} \boldsymbol{x}=1 \tag{2.19}
\end{equation*}
$$

2.4 Singular value decomposition

SVD factorizes any matrix into three matrices consisting of two orthogonal matrices and a diagonal matrix of singular values. For matrix $\boldsymbol{A} \in \mathbb{R}^{n \times m}$,

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{T} \tag{2.20}
\end{equation*}
$$

where \boldsymbol{U} and \boldsymbol{V} are two orthogonal matrices, the columns of \boldsymbol{U} are referred to as left singular vectors of \boldsymbol{A}, the columns of \boldsymbol{V} are referred to as right singular vectors of \boldsymbol{A}, Σ is a diagonal matrix whose diagonal elements are the singular values of matrix \boldsymbol{A}.

The rank of \boldsymbol{A} satisfies $r \leq \min (n, m)$, then

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{U}_{n \times r} \Sigma_{r \times r}\left(\boldsymbol{V}^{T}\right)_{r \times m}=\sum_{i=1}^{r} s_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \tag{2.21}
\end{equation*}
$$

where s_{i} is the i-th element in the diagonal of Σ, also the i-th singular value of $\boldsymbol{A}, \boldsymbol{u}_{i}$ is the i-th column vector in \boldsymbol{U} and \boldsymbol{v}_{i} is the i-th column vector in \boldsymbol{V}.
This equation indicates that a matrix is the summation of the multiplication of its singular values and corresponding singular vectors. In some cases, we only need the first (max) k singular values and singular vectors to express \boldsymbol{A} and eliminate the influence of dimensions with lower singular value, truncated SVD can be expressed as:

$$
\begin{equation*}
\tilde{\boldsymbol{A}}=\sum_{i=1}^{k} s_{i} \boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{v}_{i}^{T} \tag{2.22}
\end{equation*}
$$

Next, we examine the norm of \boldsymbol{A} from SVD perspective,

$$
\|\boldsymbol{A}\| \leq\|\boldsymbol{U}\|\|\Sigma\|\left\|\boldsymbol{V}^{T}\right\|=\|\Sigma\|=\sigma_{\max }
$$

where $\|\boldsymbol{U}\|=\|\boldsymbol{V}\|=1$.
Similarly, Σ can be expressed using \boldsymbol{A},

$$
\Sigma=\boldsymbol{U}^{T} \boldsymbol{U} \Sigma \boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}
$$

The norm of Σ satisfies the following inequality,

$$
\|\Sigma\| \leq\left\|\boldsymbol{U}^{T}\right\|\|\boldsymbol{A}\|\|\boldsymbol{V}\|=\|\boldsymbol{A}\|
$$

Therefore,

$$
\begin{equation*}
\|\boldsymbol{A}\|=\|\Sigma\|=\sigma_{\max } \tag{2.23}
\end{equation*}
$$

This equation indicates that a matrix's norm equals its maximum singular value.
Now we consider the situation of $\boldsymbol{A}^{T} \boldsymbol{A}, \boldsymbol{A}^{T} \boldsymbol{A}$ can be expressed using the SVD form of \boldsymbol{A} :

$$
\begin{equation*}
\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{V} \Sigma \boldsymbol{U}^{T} \boldsymbol{U} \Sigma \boldsymbol{V}^{T}=\boldsymbol{V} \Sigma^{2} \boldsymbol{V}^{T} \tag{2.24}
\end{equation*}
$$

where $\boldsymbol{U}^{T} \boldsymbol{U}=1$.
This equation shows that the diagonal elements in Σ^{2} are eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$.
Using SVD, the pesudomatrix of \boldsymbol{A} can be defined as:

$$
\begin{equation*}
\boldsymbol{A}^{+}=\boldsymbol{V}_{m \times r} \Sigma_{r \times r}^{-1}\left(\boldsymbol{U}^{T}\right)_{r \times n} \tag{2.25}
\end{equation*}
$$

Similar to $\|\boldsymbol{A}\|$, we can derive the norm of \boldsymbol{A}^{+}as:

$$
\begin{equation*}
\left\|\boldsymbol{A}^{+}\right\|=\frac{1}{\sigma_{\min }} \tag{2.26}
\end{equation*}
$$

2.5 Positive semi-definite

A matrix is positive semi-definite (PSD) if any quadratic form it defines yields no negative values.

$$
\begin{equation*}
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \geq 0, \forall \boldsymbol{x} \tag{2.27}
\end{equation*}
$$

PSD matrices are real symmetric matrices with non-negative eigenvalues. For a PSD matrix \boldsymbol{A}, it can be factorized using eigenvalue decomposition:

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{U}^{T} \tag{2.28}
\end{equation*}
$$

where \boldsymbol{U} is an orthogonal matrix, and Σ is a diagonal matrix with diagonal elements being eigenvalues of \boldsymbol{A}.

In the attention mechanism, we have query matrix \boldsymbol{Q} and key matrix \boldsymbol{K}, the similarity between \boldsymbol{Q} and \boldsymbol{K} is often defined as the inner products of \boldsymbol{Q} and \boldsymbol{K} through the exponential function, $\exp \left(\boldsymbol{Q} \boldsymbol{K}^{T}\right)$. If we consider a matrix \boldsymbol{X} composed of \boldsymbol{Q} and \boldsymbol{K} :

$$
\boldsymbol{X}=\left[\begin{array}{c}
\boldsymbol{Q} \\
K
\end{array}\right]
$$

Then the matrix $\exp \left(\boldsymbol{X} \boldsymbol{X}^{T}\right)$ is a PSD matrix with $\exp \left(\boldsymbol{Q} \boldsymbol{K}^{T}\right)$ as its right upper component,

$$
\exp \left(\boldsymbol{X} \boldsymbol{X}^{T}\right)=\exp \left(\left[\begin{array}{ll}
\boldsymbol{Q} \boldsymbol{Q}^{T} & \boldsymbol{Q} \boldsymbol{K}^{T} \\
\boldsymbol{K} \boldsymbol{Q}^{T} & \boldsymbol{K} \boldsymbol{K}^{T}
\end{array}\right]\right)
$$

2.6 Revisit linear regression

Recall that the optimization objective of a linear regression model can be described as the equation below:

$$
\begin{equation*}
\beta^{*}=\underset{\beta}{\arg \min }<\boldsymbol{X} \beta-\boldsymbol{Y}, \boldsymbol{X} \beta-\boldsymbol{Y}> \tag{2.29}
\end{equation*}
$$

we make the inner product term as a function $f(\beta)$, then take the first derivative of the square loss using matrix derivative rules,

$$
\begin{equation*}
\frac{\partial f}{\partial \beta}=0 \Rightarrow \boldsymbol{X}^{T} \boldsymbol{X} \hat{\beta}=\boldsymbol{X}^{T} \boldsymbol{Y} \tag{2.30}
\end{equation*}
$$

If $\boldsymbol{X}^{T} \boldsymbol{X}$ is invertible, we can derive the closed-form solution of $\hat{\beta}$,

$$
\begin{equation*}
\hat{\beta}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y} \tag{2.31}
\end{equation*}
$$

The numerical stability of $\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}$ is dependent on $\boldsymbol{X}^{T} \boldsymbol{X}$. Based on Equation (2.14), we compute the condition number of $\boldsymbol{X}^{T} \boldsymbol{X}$ as

$$
\begin{equation*}
\kappa\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)=\|\boldsymbol{X}\|^{2}\left\|\boldsymbol{X}^{+}\right\|^{2} \tag{2.32}
\end{equation*}
$$

Using QR factorization $\boldsymbol{X}=\boldsymbol{Q R}$, where \boldsymbol{Q} is an orthogonal matrix and \boldsymbol{R} is an upper triangular matrix. Then we have,

$$
\begin{align*}
& \boldsymbol{X}^{T} \boldsymbol{X} \hat{\beta}=\boldsymbol{X}^{T} \boldsymbol{Y} \Rightarrow \boldsymbol{R}^{T} \boldsymbol{Q}^{T} \boldsymbol{Q} \boldsymbol{R} \hat{\beta}=\boldsymbol{R}^{T} \boldsymbol{Q}^{T} \boldsymbol{Y} \\
& \Rightarrow \boldsymbol{Q}^{T} \boldsymbol{Q} \boldsymbol{R} \hat{\beta}=\boldsymbol{Q}^{T} \boldsymbol{Y} \\
& \Rightarrow \boldsymbol{R} \hat{\beta}=\boldsymbol{Q}^{T} \boldsymbol{Y} \\
& \Rightarrow \hat{\beta}=\boldsymbol{R}^{-1} \boldsymbol{Q}^{T} \boldsymbol{Y} \\
& \kappa(\boldsymbol{R})=\kappa\left(\boldsymbol{Q}^{-1} \boldsymbol{X}\right)=\kappa(\boldsymbol{X})=\|\boldsymbol{X}\|\left\|\boldsymbol{X}^{+}\right\| \tag{2.33}
\end{align*}
$$

Using Equation (2.23) and Equation (2.26), the condition number can be further expressed as

$$
\begin{equation*}
\kappa\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)=\kappa\left(\boldsymbol{V} \Sigma^{2} \boldsymbol{V}^{T}\right)=\kappa\left(\Sigma^{2}\right)=\frac{\sigma_{\max }^{2}}{\sigma_{\min }^{2}} \tag{2.34}
\end{equation*}
$$

Revisit the variance of $\hat{\beta}$,

$$
\begin{equation*}
\operatorname{Var}(\hat{\beta})=\sigma^{2}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \tag{2.35}
\end{equation*}
$$

If we fix the norm of \boldsymbol{X} as 1 , then the maximum eigenvalue $\sigma_{\max }$ equals to 1. Condition number of $\boldsymbol{X}^{T} \boldsymbol{X}$ can be written as:

$$
\kappa\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)=\frac{1}{\sigma_{\min }^{2}}
$$

Taking the norm of variance on $\hat{\beta}$, we can have for $\|\operatorname{Var}(\hat{\beta})\|$,

$$
\|\operatorname{Var}(\hat{\beta})\|=\left\|\sigma^{2}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}\right\|=\frac{\sigma^{2}}{\sigma_{\min }^{2}}
$$

In this case, if the smallest eigenvalue of \boldsymbol{X} is close to 0 , the colinearity between variables is relatively large, which is also reflected in the condition number and the estimation variance.

